OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3737–3745

Tunable graphene antennas for selective enhancement of THz-emission

R. Filter, M. Farhat, M. Steglich, R. Alaee, C. Rockstuhl, and F. Lederer  »View Author Affiliations

Optics Express, Vol. 21, Issue 3, pp. 3737-3745 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1340 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we will introduce THz graphene antennas that strongly enhance the emission rate of quantum systems at specific frequencies. The tunability of these antennas can be used to selectively enhance individual spectral features. We will show as an example that any weak transition in the spectrum of coronene can become the dominant contribution. This selective and tunable enhancement establishes a new class of graphene-based THz devices, which will find applications in sensors, novel light sources, spectroscopy, and quantum communication devices.

© 2013 OSA

OCIS Codes
(020.4900) Atomic and molecular physics : Oscillator strengths
(300.2140) Spectroscopy : Emission
(300.6390) Spectroscopy : Spectroscopy, molecular
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: November 16, 2012
Revised Manuscript: January 21, 2013
Manuscript Accepted: January 23, 2013
Published: February 6, 2013

R. Filter, M. Farhat, M. Steglich, R. Alaee, C. Rockstuhl, and F. Lederer, "Tunable graphene antennas for selective enhancement of THz-emission," Opt. Express 21, 3737-3745 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005). [CrossRef] [PubMed]
  2. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930 (2010). [CrossRef] [PubMed]
  3. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006). [CrossRef] [PubMed]
  4. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-q photonic double-heterostructure nanocavity,” Nat. Mat.4, 207–210 (2005). [CrossRef]
  5. A. J. Campillo, J. D. Eversole, and H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett.67, 437–440 (1991). [CrossRef] [PubMed]
  6. J.-J. Greffet, M. Laroche, and F. Marquier, “Impedance of a nanoantenna and a single quantum emitter,” Phys. Rev. Lett.105, 117701 (2010). [CrossRef] [PubMed]
  7. F. H. L. Koppens, D. E. Chang, and F. J. Garcia de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett.11, 3370–3377 (2011). [CrossRef] [PubMed]
  8. R. Filter, S. Mühlig, T. Eichelkraut, C. Rockstuhl, and F. Lederer, “Controlling the dynamics of quantum mechanical systems sustaining dipole-forbidden transitions via optical nanoantennas,” Phys. Rev. B86, 035404 (2012). [CrossRef]
  9. S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett.106, 193004 (2011). [CrossRef] [PubMed]
  10. M. Tamagnone, J. Gomez-Diaz, J. Mosig, and J. Perruisseau-Carrier, “Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets,” J. Appl. Phys.112, 114915–114915 (2012). [CrossRef]
  11. M. Tamagnone, J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, “Reconfigurable terahertz plasmonic antenna concept using a graphene stack,” Appl. Phys. Lett.101, 214102 (2012). [CrossRef]
  12. R. Alaee, C. Menzel, C. Rockstuhl, and F. Lederer, “Perfect absorbers on curved surfaces and their potential applications,” Opt. Express20, 18370–18376 (2012). [CrossRef] [PubMed]
  13. H. Boehm, A. Clauss, U. Hofmann, and G. Fischer, “Dünnste kohlenstoff-folien,” Z. Naturforsch. B17, 150–153 (1962).
  14. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306, 666–669 (2004). [CrossRef] [PubMed]
  15. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81, 109–162 (2009). [CrossRef]
  16. Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene–sio2 interface,” Nano Lett.11, 4701–4705 (2011). [CrossRef] [PubMed]
  17. J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature (2012). [CrossRef]
  18. G. W. Hanson, “Dyadic greens functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys.103, 064302 (2008). [CrossRef]
  19. S. Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, “Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B84, 195405 (2011). [CrossRef]
  20. Y.-J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, “Tuning the graphene work function by electric field effect,” Nano Lett.9, 3430–3434 (2009). [CrossRef] [PubMed]
  21. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. Bechtel, X. Liang, A. Zettl, Y. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanot.6, 630–634 (2011). [CrossRef]
  22. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7, 330–334 (2012). [CrossRef] [PubMed]
  23. M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009). [CrossRef]
  24. W. Schumacher, M. Kühnert, P. Rösch, and J. Popp, “Identification and classification of organic and inorganic components of particulate matter via raman spectroscopy and chemometric approaches,” J. Raman Spectrosc.42, 383–392 (2011). [CrossRef]
  25. W. Xu, X. Ling, J. Xiao, M. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced raman spectroscopy on a flat graphene surface,” PNAS109, 9281–9286 (2012). [CrossRef] [PubMed]
  26. W. Vogel and D. G. Welsch, Quantum Optics (Wiley, 2006). [CrossRef]
  27. L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett.32, 1623–1625 (2007). [CrossRef] [PubMed]
  28. C. X. Cong, T. Yu, Z. H. Ni, L. Liu, Z. X. Shen, and W. Huang, “Fabrication of graphene nanodisk arrays using nanosphere lithography,” JPCC113, 6529–6532 (2009). [CrossRef]
  29. R. Filter, J. Qi, C. Rockstuhl, and F. Lederer, “Circular optical nanoantennas: an analytical theory,” Phys. Rev. B85, 125429 (2012). [CrossRef]
  30. C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. (J. Wiley, New York, 2005).
  31. R. Esteban, M. Laroche, and J.-J. Greffet, “Influence of metallic nanoparticles on upconversion processes,” J. Appl. Phys.105, 033107 (2009). [CrossRef]
  32. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon.1, 438–483 (2009). [CrossRef]
  33. A. Tielens, The Physics and Chemistry of the Interstellar Medium (Cambridge Univ Pr, 2005). [CrossRef]
  34. S. R. Langhoff, “Theoretical infrared spectra for polycyclic aromatic hydrocarbon neutrals, cations, and anions,” J. Phys. Chem.100, 2819–2841 (1996). [CrossRef]
  35. M. Steglich, C. Jäger, G. Rouillé, F. Huisken, H. Mutschke, and T. Henning, “Electronic spectroscopy of medium-sized polycyclic aromatic hydrocarbons: implications for the carriers of the 2175 Å uv bump,” ApJ712, L16 (2010). [CrossRef]
  36. P. Würfel, S. Finkbeiner, and E. Daub, “Generalized planck’s radiation law for luminescence via indirect transitions,” Appl. Phys. A-Mater. Sci. Process.60, 67–70 (1995). [CrossRef]
  37. S. M. Barnett and R. Loudon, “Sum rule for modified spontaneous emission rates,” Phys. Rev. Lett.77, 2444–2446 (1996). [CrossRef] [PubMed]
  38. K. Joulain, J. Mulet, F. Marquier, R. Carminati, and J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and casimir forces revisited in the near field,” Surf. Sci. Rep.57, 59–112 (2005). [CrossRef]
  39. A. Jones and M. Raschke, “Thermal infrared near-field spectroscopy,” Nano Lett.12, 1475–1481 (2012). [CrossRef] [PubMed]
  40. A. L. Mattioda, A. Ricca, J. Tucker, C. W. Bauschlicher, and L. J. Allamandola, “Far-infrared spectroscopy of neutral coronene, ovalene, and dicoronylene,” AJ137, 4054 (2009). [CrossRef]
  41. C. Rockstuhl and W. Zhang, “Terahertz optics: terahertz phase modulator,” Nat. Photonics3, 130–131 (2009). [CrossRef]
  42. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011). [CrossRef] [PubMed]
  43. A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett.11, 2396–2399 (2011). [CrossRef] [PubMed]
  44. G. Y. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. Yevtushenko, and A. V. Gusakov, “Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation,” Phys. Rev. B60, 17136–17149 (1999). [CrossRef]
  45. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys.: Condens. Matter19, 026222 (2007). [CrossRef]
  46. P.-Y. Chen and A. Alu, “Atomically thin surface cloak using graphene monolayers,” ACS Nano5, 5855–5863 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited