OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3756–3774

Single-PPLN-assisted wavelength-/time-selective switching/dropping/swapping for 100-GHz-spaced WDM signals

Jian Wang, Hongyan Fu, Dongyu Geng, and Alan E. Willner  »View Author Affiliations

Optics Express, Vol. 21, Issue 3, pp. 3756-3774 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3675 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an approach to implementing wavelength- and time-selective optical switching, dropping and swapping based on the sum-frequency generation (SFG) or cascaded sum- and difference-frequency generation (cSFG/DFG) in a periodically poled lithium niobate (PPLN) waveguide. Analytical solutions are derived, showing the parametric depletion effect for optical switching and the narrow-band operation due to quasi-phase matching (QPM) condition of PPLN. Using parametric depletion effect of SFG process, we demonstrate wavelength- and time-selective optical switching for ITU-grid compatible 40-Gbit/s wavelength-division multiplexed (WDM) signals with a channel spacing of 100 GHz. Less than 1-dB power penalty at a bit-error rate (BER) of 10−9 is measured for the wavelength- and time-selective switching channel. Negligible impacts are observed on other channels of WDM signals. Using combined effects of parametric depletion and wavelength conversion of cSFG/DFG processes, we demonstrate wavelength- and time-selective optical dropping for ITU-grid compatible 100-GHz-spaced 40-Gbit/s WDM signals. Moreover, we demonstrate optical swapping between two 100-GHz-spaced 40-Gbit/s signals. The obtained theoretical and experimental results confirm single-PPLN-assisted wavelength- and time-selective optical switching, dropping and swapping for 100-GHz-spaced WDM signals, which might potentially be extended to WDM signals with narrower channel spacing.

© 2013 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(070.4560) Fourier optics and signal processing : Data processing by optical means
(130.3730) Integrated optics : Lithium niobate
(190.0190) Nonlinear optics : Nonlinear optics

ToC Category:
Subsystems for Optical Networks

Original Manuscript: October 22, 2012
Revised Manuscript: December 16, 2012
Manuscript Accepted: December 17, 2012
Published: February 7, 2013

Virtual Issues
European Conference on Optical Communication 2012 (2012) Optics Express

Jian Wang, Hongyan Fu, Dongyu Geng, and Alan E. Willner, "Single-PPLN-assisted wavelength-/time-selective switching/dropping/swapping for 100-GHz-spaced WDM signals," Opt. Express 21, 3756-3774 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron.17(2), 320–332 (2011). [CrossRef]
  2. S. Radic, “Parametric signal processing,” IEEE J. Sel. Top. Quantum Electron.18(2), 670–680 (2012). [CrossRef]
  3. K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical signal processing,” IEEE J. Sel. Top. Quantum Electron.6(6), 1428–1435 (2000). [CrossRef]
  4. J. Wang, J. Sun, C. Luo, and Q. Sun, “Flexible all-optical wavelength conversions of 1.57-ps pulses exploiting cascaded sum- and difference frequency generation (cSFG/DFG) in a PPLN waveguide,” Appl. Phys. B83(4), 543–548 (2006). [CrossRef]
  5. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using nonlinearities in guided-wave devices,” J. Lightwave Technol.24(7), 2579–2592 (2006). [CrossRef]
  6. J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical format conversion based on a periodically poled lithium niobate loop mirror,” Opt. Lett.32(11), 1477–1479 (2007). [CrossRef] [PubMed]
  7. J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking,” Opt. Lett.32(16), 2462–2464 (2007). [CrossRef] [PubMed]
  8. B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev.6(1), 97–114 (2012). [CrossRef]
  9. L. K. Oxenlowe, M. Hua Ji, Galili, Minhao Pu, H. C. H. Hao Hu, K. Mulvad, J. M. Yvind, A. T. Hvam, Clausen, and P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron.18(2), 996–1005 (2012). [CrossRef]
  10. J. Wang, H. Huang, X. Wang, J. Y. Yang, and A. E. Willner, “Reconfigurable 2.3-Tbit/s DQPSK simultaneous add/drop, data exchange and equalization using double-pass LCoS and bidirectional HNLF,” Opt. Express19(19), 18246–18252 (2011). [CrossRef] [PubMed]
  11. K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron.8(3), 560–568 (2002). [CrossRef]
  12. R. W. L. Fung, H. K. Y. Cheung, and K. K. Y. Wong, “Widely tunable wavelength exchange in anomalous-dispersion regime,” IEEE Photon. Technol. Lett.19(22), 1846–1848 (2007). [CrossRef]
  13. J. Wang, Z. Bakhtiari, S. R. Nuccio, O. F. Yilmaz, X. Wu, and A. E. Willner, “Phase-transparent optical data exchange of 40 Gbit/s differential phase-shift keying signals,” Opt. Lett.35(17), 2979–2981 (2010). [CrossRef] [PubMed]
  14. M. Shen, X. Xu, T. I. Yuk, and K. K. Y. Wong, “Byte-level parametric wavelength exchange for narrow pulsewidth return-to-zero signals,” IEEE Photon. Technol. Lett.21(21), 1591–1593 (2009). [CrossRef]
  15. V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002). [CrossRef]
  16. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004). [CrossRef] [PubMed]
  17. K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Photon. Technol. Lett.12(6), 654–656 (2000). [CrossRef]
  18. T. Suhara and H. Ishizuki, “Integrated QPM sum-frequency generation interferometer device for ultrafast optical switching,” IEEE Photon. Technol. Lett.13(11), 1203–1205 (2001). [CrossRef]
  19. Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkötter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical channel dropping in periodically poled Ti:LiNbO3 channel waveguides,” IEEE Photon. Technol. Lett.15(7), 978–980 (2003). [CrossRef]
  20. J. Wang and Q. Z. Sun, “Theoretical analysis of power swapping in quadratic nonlinear medium,” Appl. Phys. Lett.96(8), 081108 (2010). [CrossRef]
  21. J. Wang, S. R. Nuccio, X. Wu, O. F. Yilmaz, L. Zhang, I. Fazal, J. Y. Yang, Y. Yue, and A. E. Willner, “40 Gbit/s optical data exchange between wavelength-division-multiplexed channels using a periodically poled lithium niobate waveguide,” Opt. Lett.35(7), 1067–1069 (2010). [CrossRef] [PubMed]
  22. A. Bogoni, X. Wu, S. R. Nuccio, J. Wang, Z. Bakhtiari, and A. E. Willner, “Photonic 640-Gb/s reconfigurable OTDM add-drop multiplexer based on pump depletion in a single PPLN waveguide,” IEEE J. Sel. Top. Quantum Electron.18(2), 709–716 (2012). [CrossRef]
  23. T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. R. A. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. K. Tsang, “Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides,” Opt. Express13(19), 7298–7303 (2005). [CrossRef] [PubMed]
  24. L. Yin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Optical switching using nonlinear polarization rotation inside silicon waveguides,” Opt. Lett.34(4), 476–478 (2009). [CrossRef] [PubMed]
  25. S. Abaslou and V. Ahmadi, “Compact all-optical switch for WDM networks based on Raman effect in silicon nanowavegide,” Opt. Lett.37(1), 40–42 (2012). [CrossRef] [PubMed]
  26. Y. Miyamoto, T. Kataoka, K. Yonenaga, M. Tomizawa, A. Hirano, S. Kuwahara, and Y. Tada, “WDM field trials of 43-Gb/s/channel transport system for optical transport network,” J. Lightwave Technol.20(12), 2115–2128 (2002). [CrossRef]
  27. M. Sauer, J. E. Hurley, S. Ten, J. J. Ferner, and S. P. Colby, “1.6 Tbit/s transmission over 2160 km of field-deployed dispersion-managed fibre without per channel dispersion compensation,” Electron. Lett.39(9), 728–730 (2003). [CrossRef]
  28. A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, and T. Li, “High-capacity optical transmission systems,” J. Lightwave Technol.26(9), 1032–1045 (2008). [CrossRef]
  29. J. Wang, H. Fu, D. Geng, and A. Willner, “All-optical wavelength-/time-selective switching/dropping/swapping for 100-GHz-spaced WDM signals using a periodically poled lithium niobate waveguide,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper Th.1.A.5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited