OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3818–3825

Highly linear silicon traveling wave Mach-Zehnder carrier depletion modulator based on differential drive

Matthew Streshinsky, Ali Ayazi, Zhe Xuan, Andy Eu-Jin Lim, Guo-Qiang Lo, Tom Baehr-Jones, and Michael Hochberg  »View Author Affiliations

Optics Express, Vol. 21, Issue 3, pp. 3818-3825 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1203 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present measurements of the nonlinear distortions of a traveling-wave silicon Mach-Zehnder modulator based on the carrier depletion effect. Spurious free dynamic range for second harmonic distortion of 82 dB·Hz1/2 is seen, and 97 dB·Hz2/3 is measured for intermodulation distortion. This measurement represents an improvement of 20 dB over the previous best result in silicon. We also show that the linearity of a silicon traveling wave Mach-Zehnder modulator can be improved by differentially driving it. These results suggest silicon may be a suitable platform for analog optical applications.

© 2013 OSA

OCIS Codes
(040.6040) Detectors : Silicon
(130.0130) Integrated optics : Integrated optics
(230.2090) Optical devices : Electro-optical devices
(250.7360) Optoelectronics : Waveguide modulators

ToC Category:
Integrated Optics

Original Manuscript: November 22, 2012
Revised Manuscript: January 12, 2013
Manuscript Accepted: January 24, 2013
Published: February 7, 2013

Matthew Streshinsky, Ali Ayazi, Zhe Xuan, Andy Eu-Jin Lim, Guo-Qiang Lo, Tom Baehr-Jones, and Michael Hochberg, "Highly linear silicon traveling wave Mach-Zehnder carrier depletion modulator based on differential drive," Opt. Express 21, 3818-3825 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006). [CrossRef]
  2. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol.24(12), 4600–4615 (2006). [CrossRef]
  3. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006). [CrossRef]
  4. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004). [CrossRef] [PubMed]
  5. S. J. Spector, M. W. Geis, G.-R. Zhou, M. E. Grein, F. Gan, M. A. Popović, J. U. Yoon, D. M. Lennon, E. P. Ippen, F. Z. Kärtner, and T. M. Lyszczarz, “CMOS-compatible dual-output silicon modulator for analog signal processing,” Opt. Express16(15), 11027–11031 (2008). [CrossRef] [PubMed]
  6. T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. G. Teo, G. Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express20(11), 12014–12020 (2012). [CrossRef] [PubMed]
  7. T. Ismail, C.-P. Liu, J. E. Mitchell, and A. J. Seeds, “High-dynamic range wireless-over-fiber link using feed forward linearization,” J. Lightwave Technol.25(11), 3274–3282 (2007). [CrossRef]
  8. C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech.54(2), 906–920 (2006). [CrossRef]
  9. J. C. Fan, C. L. Lu, and L. G. Kazovsky, “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links,” IEEE Trans. Microw. Theory Techn. 45(8), 1390–1397 (1997).
  10. W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech.43(9), 2184–2197 (1995). [CrossRef]
  11. E. I. Ackerman and A. S. Daryoush, “Broad-band external modulation fiber-optic links for antenna-remoting applications,” IEEE Trans. Microw. Theory Tech.45(8), 1436–1442 (1997). [CrossRef]
  12. S. Dubovitsky, W. H. Steier, S. Yegnanarayanan, and B. Jalali, “Analysis and improvement of Mach-Zehnder modulator linearity performance for chirped and tunable optical carriers,” J. Lightwave Technol.20(5), 886–891 (2002). [CrossRef]
  13. M. Sauer, A. Kobyakov, and J. George, “Radio over fiber for picocellular network architectures,” J. Lightwave Technol.25(11), 3301–3320 (2007). [CrossRef]
  14. F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010). [CrossRef]
  15. A. Ayazi, T. Baehr-Jones, Y. Liu, A. E.-J. Lim, and M. Hochberg, “Linearity of silicon ring modulators for analog optical links,” Opt. Express20(12), 13115–13122 (2012). [CrossRef] [PubMed]
  16. A. M. Gutierrez, J. V. Galan, J. Herrera, A. Brimont, D. Marris-Morini, J. M. Fedeli, L. Vivien, and P. Sanchis, “High linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications.” in Group IV Photonics, 2012 IEEE 9th International Conference on (IEEE, 2012), pp. 57–59 (2012).
  17. A. M. Gutierrez, A. Brimont, G. Rasigade, M. Ziebell, D. Marris-Morini, J.-M. Fédéli, L. Vivien, J. Marti, and P. Sanchis, “Ring-assisted Mach–Zehnder interferometer silicon modulator for enhanced performance,” J. Lightwave Technol.30(1), 9–14 (2012). [CrossRef]
  18. A. Khilo, C. M. Sorace, and F. X. Kärtner, “Broadband linearized silicon modulator,” Opt. Express19(5), 4485–4500 (2011). [CrossRef] [PubMed]
  19. A. Karim and J. Devenport, “Noise figure reduction in externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett.19(5), 312–314 (2007). [CrossRef]
  20. K. J. Williams, L. T. Nichols, and R. D. Esman, “Photodetector nonlinearity limitations on a high-dynamic range 3 GHz fiber optic link,” J. Lightwave Technol.16(2), 192–199 (1998). [CrossRef]
  21. B. Liu, J. Shim, Y.-J. Chiu, A. Keating, J. Piprek, and J.E. Bowers, “Analog characterization of low-voltage MQW traveling-wave electroabsorption modulators,” J. Lightwave Technol.21(12), 3011–3019 (2003). [CrossRef]
  22. http://www.ime.a-star.edu.sg/PPSSite/index.asp .
  23. T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010). [CrossRef]
  24. T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. Eu-Jin Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, S. Ocheltree, C. Hill, A. Pomerene, P. De Dobbelaere, A. Mekis, and M. Hochberg, “Shared shuttles for integrated silicon optoelectronics,” Proc. SPIE8252, 82520G, 82520G-11 (2012). [CrossRef]
  25. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited