OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3850–3860

Dynamic optical sampling by cavity tuning and its application in lidar

Lin Yang, Jinsong Nie, and Lingze Duan  »View Author Affiliations

Optics Express, Vol. 21, Issue 3, pp. 3850-3860 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1523 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical sampling by cavity tuning (OSCAT) enables cost-effective realization of fast tunable optical delay using a single femtosecond laser. We report here a dynamic model of OSCAT, taking into account the continuous modulation of laser repetition rates. This allows us to evaluate the delay scan depth under high interferometer imbalance and high scan rates, which cannot be described by the previous static model. We also report the demonstration of remote motion tracking based on fast OSCAT. Target vibration as small as 15 µm peak to peak and as fast as 50 Hz along line-of-sight has been successfully detected at an equivalent free-space distance of more than 2 km.

© 2013 OSA

OCIS Codes
(060.4080) Fiber optics and optical communications : Modulation
(070.4550) Fourier optics and signal processing : Correlators
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(280.3640) Remote sensing and sensors : Lidar
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Remote Sensing

Original Manuscript: November 30, 2012
Revised Manuscript: January 30, 2013
Manuscript Accepted: January 31, 2013
Published: February 7, 2013

Lin Yang, Jinsong Nie, and Lingze Duan, "Dynamic optical sampling by cavity tuning and its application in lidar," Opt. Express 21, 3850-3860 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Valdmanis and G. Mourou, “Subpicosecond electrooptic sampling: principles and applications,” IEEE J. Quantum Electron.22(1), 69–78 (1986). [CrossRef]
  2. W. C. Swann and N. R. Newbury, “Frequency-resolved coherent lidar using a femtosecond fiber laser,” Opt. Lett.31(6), 826–828 (2006). [CrossRef] [PubMed]
  3. M. R. Hee, J. A. Izatt, J. M. Jacobson, J. G. Fujimoto, and E. A. Swanson, “Femtosecond transillumination optical coherence tomography,” Opt. Lett.18(12), 950–952 (1993). [CrossRef] [PubMed]
  4. A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express13(22), 9029–9038 (2005). [CrossRef] [PubMed]
  5. N. C. J. van der Valk, W. A. M. van der Marel, and P. C. M. Planken, “Terahertz polarization imaging,” Opt. Lett.30(20), 2802–2804 (2005). [CrossRef] [PubMed]
  6. A. H. Zewail, “Femtochemistry: atomi-scale dynamics of the chemical bond,” J. Phys. Chem. A104(24), 5660–5694 (2000). [CrossRef]
  7. V. Sundström, “Femtobiology,” Annu. Rev. Phys. Chem.59(1), 53–77 (2008). [CrossRef] [PubMed]
  8. J. Szydlo, N. Delachenal, R. Gianotti, R. Walti, H. Bleuler, and R. P. Salathe, “Air-turbine driven optical low-coherence reflectometry at 28.6-kHz scan repetition rate,” Opt. Commun.154(1-3), 1–4 (1998). [CrossRef]
  9. A. L. Oldenburg, J. J. Reynolds, D. L. Marks, and S. A. Boppart, “Fast-Fourier-domain delay line for in vivo optical coherence tomography with a polygonal scanner,” Appl. Opt.42(22), 4606–4611 (2003). [CrossRef] [PubMed]
  10. P. A. Elzinga, F. E. Lytle, Y. Jian, G. B. King, and N. M. Laurendeau, “Pump/probe spectroscopy by asynchronous optical sampling,” Appl. Spectrosc.41(1), 2–4 (1987). [CrossRef]
  11. C. Janke, M. Först, M. Nagel, H. Kurz, and A. Bartels, “Asynchronous optical sampling for high-speed characterization of integrated resonant terahertz sensors,” Opt. Lett.30(11), 1405–1407 (2005). [CrossRef] [PubMed]
  12. A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007). [CrossRef] [PubMed]
  13. T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express18(2), 1613–1617 (2010). [CrossRef] [PubMed]
  14. R. Wilk, T. Hochrein, M. Koch, M. Mei, and R. Holzwarth, “OSCAT: Novel technique for time-resolved experiments without moveable optical delay lines,” J. Infrared Milli. Terahz. Waves32(5), 596–602 (2011). [CrossRef]
  15. R. Wilk, T. Hochrein, M. Koch, M. Mei, and R. Holzwarth, “Terahertz spectrometer operation by laser repetition frequency tuning,” J. Opt. Soc. Am. B28(4), 592–595 (2011). [CrossRef]
  16. C. Mohr, A. Romann, A. Ruehl, I. Hartl, and M. E. Fermann, “Fourier transform spectrometry using a single cavity length modulated mode-locked fiber laser,” in Fiber Laser Applications, OSA Technical Digest (CD), paper FWA2.
  17. T. C. Briles, D. C. Yost, A. Cingöz, J. Ye, and T. R. Schibli, “Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth,” Opt. Express18(10), 9739–9746 (2010). [CrossRef] [PubMed]
  18. P. Balling, P. Křen, P. Mašika, and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express17(11), 9300–9313 (2009). [CrossRef] [PubMed]
  19. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, H. P. Urbach, and J. J. M. Braat, “High-accuracy long-distance measurements in air with a frequency comb laser,” Opt. Lett.34(13), 1982–1984 (2009). [CrossRef] [PubMed]
  20. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics3(6), 351–356 (2009). [CrossRef]
  21. J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics4(10), 716–720 (2010). [CrossRef]
  22. H. Byun, M. Y. Sander, A. Motamedi, H. Shen, G. S. Petrich, L. A. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “Compact, stable 1 GHz femtosecond Er-doped fiber lasers,” Appl. Opt.49(29), 5577–5582 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited