OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3861–3871

Compact and low power consumption tunable photonic crystal nanobeam cavity

William S. Fegadolli, José E. B. Oliveira, Vilson R. Almeida, and Axel Scherer  »View Author Affiliations

Optics Express, Vol. 21, Issue 3, pp. 3861-3871 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1696 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A proof-of-concept for a new and entirely CMOS compatible tunable nanobeam cavity is demonstrated in this paper. Preliminary results show that a compact nanobeam cavity (~20 μm2) with high Q-factor (~50,000) and integrated with a micro-heater atop, is able of tuning the resonant wavelength up to 15 nm with low power consumption (0.35nm/mW), and of attaining high modulation depth with only ~100 μW. Additionally, a tunable bi-stable behavior is reported.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.4780) Lasers and laser optics : Optical resonators
(160.6840) Materials : Thermo-optical materials
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: November 30, 2012
Revised Manuscript: January 25, 2013
Manuscript Accepted: January 25, 2013
Published: February 7, 2013

William S. Fegadolli, José E. B. Oliveira, Vilson R. Almeida, and Axel Scherer, "Compact and low power consumption tunable photonic crystal nanobeam cavity," Opt. Express 21, 3861-3871 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Pavesi and G. Guillot, (Optical Interconnects - the silicon approach) (Springer-Verlag, 2006).
  2. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett.28(15), 1302–1304 (2003). [CrossRef] [PubMed]
  3. D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol.23(8), 2455–2461 (2005). [CrossRef]
  4. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005). [CrossRef] [PubMed]
  5. D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express19(12), 11507–11516 (2011). [CrossRef] [PubMed]
  6. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004). [CrossRef] [PubMed]
  7. W. S. Fegadolli, V. R. Almeida, and J. E. B. Oliveira, “Reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators,” Opt. Express19(13), 12727–12739 (2011). [CrossRef] [PubMed]
  8. W. S. Fegadolli, G. Vargas, X. Wang, F. Valini, L. A. M. Barea, J. E. B. Oliveira, N. Frateschi, A. Scherer, V. R. Almeida, and R. R. Panepucci, “Reconfigurable silicon thermo-optical ring resonator switch based on Vernier effect control,” Opt. Express20(13), 14722–14733 (2012). [CrossRef] [PubMed]
  9. L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater.12(2), 108–113 (2012). [CrossRef] [PubMed]
  10. X. Wang, T. Liu, V. R. de Almeida, and R. R. Panepucci, “On-chip silicon photonic wavelength control of optical fiber lasers,” Opt. Express16(20), 15671–15676 (2008). [CrossRef] [PubMed]
  11. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express15(19), 11934–11941 (2007). [CrossRef] [PubMed]
  12. T. Claes, W. Bogaerts, and P. Bienstman, “Vernier-cascade label-free biosensor with integrated arrayed waveguide grating for wavelength interrogation with low-cost broadband source,” Opt. Lett.36(17), 3320–3322 (2011). [CrossRef] [PubMed]
  13. B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, “Nano-cavity in a Silicon waveguide for ultra-sensitive detection,” Appl. Phys. Lett.85, 4854–4856 (2004).
  14. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express19(19), 18529–18542 (2011). [CrossRef] [PubMed]
  15. C. Sauvan, G. Lecamp, P. Lalanne, and J. Hugonin, “Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities,” Opt. Express13(1), 245–255 (2005). [CrossRef] [PubMed]
  16. M. W. McCutcheon and M. Loncar, “Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express16(23), 19136–19145 (2008). [CrossRef] [PubMed]
  17. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997). [CrossRef]
  18. W. S. Fegadolli, J. E. B. Oliveira, and V. R. Almeida, “Highly linear electro-optic modulator based on ring resonator,” Microw. Opt. Technol. Lett.53(10), 2375–2378 (2011). [CrossRef]
  19. P.B. Deotare, I.B. Bulu, I.W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “Broadband Reconfiguration of OptoMechanical Filters,” Nat, Commun. 846 (2012).
  20. I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Lončar, “Programmable photonic crystal nanobeam cavities,” Opt. Express18(8), 8705–8712 (2010). [CrossRef] [PubMed]
  21. R. Perahia, J. D. Cohen, S. Meenehan, T. P. Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett.97(19), 191112 (2010). [CrossRef]
  22. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009). [CrossRef]
  23. L. D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express17(23), 21108–21117 (2009). [CrossRef] [PubMed]
  24. H. Gibbs, “Optical Bistability: Controlling Light with Light,” Academic Press, Orlando, (1985).
  25. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express13(7), 2678–2687 (2005). [CrossRef] [PubMed]
  26. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett.29(20), 2387–2389 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1260 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited