OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3911–3916

Three-dimensional confinement of polaritons in ZnO microcylinder

Dan Xu, Wenhui Liu, Saifeng Zhang, Xuechu Shen, and Zhanghai Chen  »View Author Affiliations

Optics Express, Vol. 21, Issue 3, pp. 3911-3916 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4782 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High quality ZnO microcylinders (MCDs), which naturally form three-dimensional (3D) optical microcavities, were synthesized by a simple vapor transportation deposition method. The exciton-polariton effects in these 3D microcavities were investigated through the angle-resolved micro-photoluminescence (µ-PL) mappings. By using the coupled oscillator model, the 3D confinement effect of polaritons, i.e., two-dimensional (2D) whispering gallery (WG) type confinement in the cross section of the ZnO MCD, overlapping with the one-dimensional (1D) Fabry-Pérot (F-P) type confinement along the c-axis, was well interpreted.

© 2013 OSA

OCIS Codes
(250.5230) Optoelectronics : Photoluminescence
(140.3945) Lasers and laser optics : Microcavities

ToC Category:

Original Manuscript: December 28, 2012
Revised Manuscript: February 2, 2013
Manuscript Accepted: February 2, 2013
Published: February 8, 2013

Dan Xu, Wenhui Liu, Saifeng Zhang, Xuechu Shen, and Zhanghai Chen, "Three-dimensional confinement of polaritons in ZnO microcylinder," Opt. Express 21, 3911-3916 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Manni, K. G. Lagoudakis, B. Pietka, L. Fontanesi, M. Wouters, V. Savona, R. André, and B. Deveaud-Plédran, “Polariton condensation in a one-dimensional disordered potential,” Phys. Rev. Lett.106(17), 176401 (2011). [CrossRef] [PubMed]
  2. L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov, P. Senellart, I. Sagnes, A. Lemaître, G. Malpuech, and J. Bloch, “Interactions in confined polariton condensates,” Phys. Rev. Lett.106(12), 126401 (2011). [CrossRef] [PubMed]
  3. O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut, R. I. Kaitouni, J. L. Staehli, F. Morier-Genoud, and B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett.88(6), 061105 (2006). [CrossRef]
  4. R. Cerna, D. Sarchi, T. K. Paraïso, G. Nardin, Y. Léger, M. E. Richard, B. Pietka, O. El Daif, F. Morier-Genoud, V. Savona, M. T. Portella-Oberli, and B. Deveaud-Plédran, “Coherent optical control of the wave function of zero-demensional exciton polaritons,” Phys. Rev. B80(12), 121309 (2009). [CrossRef]
  5. L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a ZnO nanowire cavity,” Phys. Rev. Lett.97(14), 147401 (2006). [CrossRef] [PubMed]
  6. T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett.99(16), 161104 (2011). [CrossRef]
  7. R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room temperature excitonic whispering gallery mode lasing from high-quality hexagonal ZnO microdisks,” Adv. Mater. (Deerfield Beach Fla.)23(19), 2199–2204 (2011). [CrossRef] [PubMed]
  8. J. Z. Liu, Q. M. Ngo, K. H. Park, A. G. Kim, Y. H. Ahn, J. Y. Park, K. H. Koh, and S. Lee, “Optical waveguide and cavity effects on whispering-gallery mode resonances in a ZnO nanonail,” Appl. Phys. Lett.95(22), 221105 (2009). [CrossRef]
  9. L. X. Sun, Z. H. Chen, Q. J. Ren, K. Yu, L. H. Bai, W. H. Zhou, H. Xiong, Z. Q. Zhu, and X. C. Shen, “Direct observation of whispering gallery mode polaritons and their dispersion in a ZnO tapered microcavity,” Phys. Rev. Lett.100(15), 156403 (2008). [CrossRef] [PubMed]
  10. T. C. H. Liew, I. A. Shelykh, and G. Malpuech, “ Polaritonic devices,” Physica E43, 1543–1568 (2011). [CrossRef]
  11. V. M. Menon, L. I. Deych, and A. A. Lisyansky, “Nonlinear optics: Towards polaritonic logic circuits,” Nat. Photonics4(6), 345–346 (2010). [CrossRef]
  12. W. Xie, H. X. Dong, S. F. Zhang, L. X. Sun, W. H. Zhou, Y. J. Ling, J. Lu, X. C. Shen, and Z. H. Chen, “Room-temperature polariton parametric scattering driven by a one-dimensional polariton condensate,” Phys. Rev. Lett.108(16), 166401 (2012). [CrossRef] [PubMed]
  13. H. X. Dong, S. L. Sun, L. X. Sun, W. Xie, L. Zhou, X. C. Shen, and Z. H. Chen, “Single-crystalline polyhedral In2O3 vertical Fabry-Pérot resonators,” Appl. Phys. Lett.98(1), 011913 (2011). [CrossRef]
  14. R. I. Kaitouni, O. El Daïf, A. Baas, M. Richard, T. Paraiso, P. Lugan, T. Guillet, F. Morier-Genoud, J. Ganière, J. Staehli, V. Savona, and B. Deveaud, “Engineering the spatial confinement of exciton polaritons in semiconductors,” Phys. Rev. B74(15), 155311 (2006). [CrossRef]
  15. H. Dong, L. Sun, W. Xie, W. Zhou, X. Shen, and Z. Chen, “Facile synthesis and ultraviolet lasing properties of ZnO microtubes,” J. Phys. Chem. C114(41), 17369–17373 (2010). [CrossRef]
  16. A. Baas, O. El Daïf, M. Richard, J.-P. Brantut, G. Nardin, R. Idrissi Kaitouni, T. Guillet, V. Savona, J. L. Staehli, F. Morier-Genoud, and B. Deveaud, “Zero dimensional exciton-polaritons,” Phys. Status Solidi243(10), 2311–2316 (2006) (b). [CrossRef]
  17. S. S. Kim, Y. J. Kim, G. C. Yi, and H. Cheong, “Whispering-gallery-modelike resonance of luminescence from a single hexagonal ZnO microdisk,” J. Appl. Phys.106(9), 094310 (2009). [CrossRef]
  18. C. P. Dietrich, M. Lange, C. Strum, R. Schmidt-Grund, and M. Grundmann, “One- and two-dimensional cavity modes in ZnO microwires,” New J. Phys.13(10), 103021 (2011). [CrossRef]
  19. M. Wouters, T. C. H. Liew, and V. Savona, “Energy relaxation in one-dimensional polariton condensates,” Phys. Rev. B82(24), 245315 (2010). [CrossRef]
  20. M. Fox, Quantum Optics (Oxford, 2006), Chap. 10.
  21. T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett.93(10), 103903 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited