OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3917–3925

Stabilization of multipole-mode solitons in mixed linear-nonlinear lattices with a ���� symmetry

Changming Huang, Chunyan Li, and Liangwei Dong  »View Author Affiliations


Optics Express, Vol. 21, Issue 3, pp. 3917-3925 (2013)
http://dx.doi.org/10.1364/OE.21.003917


View Full Text Article

Enhanced HTML    Acrobat PDF (1045 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the evolution of higher-order nonlinear states in a focusing cubic medium, where both the linear refractive index and the nonlinearity are spatially modulated by a complex optical lattice exhibiting a parity-time (𝒫𝒯) symmetry. We reveal that introduction of out-of-phase nonlinearity modulation makes possible the stabilization of higher-order solitons with number of poles up to 7, which are highly unstable in linear 𝒫𝒯 lattices. Under appropriate conditions, multipole-mode solitons with out-of-phase components in the neighboring lattice sites are completely stable provided that their power or propagation constant exceeds a critical value. Thus, our findings suggest an effective way for the realization of stable multipole-mode solitons in periodic potentials with gain-loss components.

© 2013 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: January 8, 2013
Revised Manuscript: February 3, 2013
Manuscript Accepted: February 3, 2013
Published: February 8, 2013

Citation
Changming Huang, Chunyan Li, and Liangwei Dong, "Stabilization of multipole-mode solitons in mixed linear-nonlinear lattices with a 𝒫𝒯 symmetry," Opt. Express 21, 3917-3925 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-3917


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature (London)422, 147–150 (2003). [CrossRef]
  2. F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep.463, 1 – 126 (2008). [CrossRef]
  3. Y. V. Kartashov, B. A. Malomed, and L. Torner, “Solitons in nonlinear lattices,” Rev. Mod. Phys.83, 247–306 (2011). [CrossRef]
  4. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Soliton modes, stability, and drift in optical lattices with spatially modulated nonlinearity,” Opt. Lett.33, 1747–1749 (2008). [CrossRef] [PubMed]
  5. F. Ye, Y. V. Kartashov, B. Hu, and L. Torner, “Light bullets in Bessel optical lattices with spatially modulated nonlinearity,” Opt. Express17, 11328–11334 (2009). [CrossRef] [PubMed]
  6. L. Dong, H. Li, C. Huang, S. Zhong, and C. Li, “Higher-charged vortices in mixed linear-nonlinear circular arrays,” Phys. Rev. A84, 043830 (2011). [CrossRef]
  7. Y. V. Kartashov, B. A. Malomed, V. A. Vysloukh, and L. Torner, “Two-dimensional solitons in nonlinear lattices,” Opt. Lett.34, 770–772 (2009). [CrossRef] [PubMed]
  8. Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, “Optical solitons in PT periodic potentials,” Phys. Rev. Lett.100, 030402 (2008). [CrossRef] [PubMed]
  9. B. Bagchi, C. Quesne, and M. Znojil, “Generalized continuity equation and modified normalization in PT-dymmetric quantum mechanics,” Mod. Phys. Lett.16, 2047–2057 (2001). [CrossRef]
  10. A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of PT-symmetry breaking in complex optical potentials,” Phys. Rev. Lett.103, 093902 (2009). [CrossRef] [PubMed]
  11. C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmetry in optics,” Nat. Phys.6, 192–195 (2010). [CrossRef]
  12. L. Chen, R. Li, N. Yang, D. Chen, and L. Li, “Optical modes in PT-symmetric double-channel waveguides,” Proc. Romanian Acad. A13, 46–54 (2012).
  13. Y. He and D. Mihalache, “Spatial solitons in parity-time-symmetric mixed linear-nonlinear optical lattices: Recent theoretical results,” Rom. Rep. Phys.64, 1243–1258 (2012).
  14. Y. He and D. Mihalache, “Lattice solitons in optical media described by the complex Ginzburg-Landau model with 𝒫𝒯 -symmetric periodic potentials,” Phys. Rev. A87, 013812 (2013). [CrossRef]
  15. J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, and T. Kottos, “Experimental study of active LRC circuits with 𝒫𝒯 symmetries,” Phys. Rev. A84, 040101 (2011). [CrossRef]
  16. J. Schindler, Z. Lin, J. M. Lee, H. Ramezani, F. M. Ellis, and T. Kottos, “𝒫𝒯-symmetric electronics,” J. Phys. A45, 444029 (2012). [CrossRef]
  17. F. K. Abdullaev, Y. V. Kartashov, V. V. Konotop, and D. A. Zezyulin, “Solitons in PT-symmetric nonlinear lattices,” Phys. Rev. A83, 041805 (2011). [CrossRef]
  18. S. Nixon, L. Ge, and J. Yang, “Stability analysis for solitons in PT-symmetric optical lattices,” Phys. Rev. A85, 023822 (2012). [CrossRef]
  19. C. Li, H. Liu, and L. Dong, “Multi-stable solitons in PT-symmetric optical lattices,” Opt. Express20, 16823–16831 (2012).
  20. K. Zhou, Z. Guo, J. Wang, and S. Liu, “Defect modes in defective parity-time symmetric periodic complex potentials,” Opt. Lett.35, 2928–2930 (2010). [CrossRef] [PubMed]
  21. H. Wang and J. Wang, “Defect solitons in parity-time periodic potentials,” Opt. Express19, 4030–4035 (2011). [CrossRef] [PubMed]
  22. Z. Lu and Z.-M. Zhang, “Defect solitons in parity-time symmetric superlattices,” Opt. Express19, 11457–11462 (2011). [CrossRef] [PubMed]
  23. S. Hu, X. Ma, D. Lu, Y. Zheng, and W. Hu, “Defect solitons in parity-time-symmetric optical lattices with nonlocal nonlinearity,” Phys. Rev. A85, 043826 (2012). [CrossRef]
  24. Z. Shi, X. Jiang, X. Zhu, and H. Li, “Bright spatial solitons in defocusing Kerr media with PT-symmetric potentials,” Phys. Rev. A84, 053855 (2011). [CrossRef]
  25. Y. He, X. Zhu, D. Mihalache, J. Liu, and Z. Chen, “Solitons in PT-symmetric optical lattices with spatially periodic modulation of nonlinearity,” Opt. Commun.285, 3320–3324 (2012). [CrossRef]
  26. Y. He, X. Zhu, D. Mihalache, J. Liu, and Z. Chen, “Lattice solitons in PT-symmetric mixed linear-nonlinear optical lattices,” Phys. Rev. A85, 013831 (2012). [CrossRef]
  27. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Soliton trains in photonic lattices,” Opt. Express12, 2831–2837 (2004). [CrossRef] [PubMed]
  28. Z. Xu, Y. V. Kartashov, and L. Torner, “Upper threshold for stability of multipole-mode solitons in nonlocal nonlinear media,” Opt. Lett.30, 3171–3173 (2005). [CrossRef] [PubMed]
  29. N. Bender, S. Factor, J. D. Bodyfelt, H. Ramezani, F. M. Ellis, and T. Kottos, “Observation of asymmetric transport in structures with active nonlinearities,” ArXiv e-prints (2013).
  30. J. Yang and T. I. Lakoba, “Universally-convergent squared-operator iteration methods for solitary waves in general nonlinear wave equations,” Stud. Appl. Math.118, 153–197 (2007). [CrossRef]
  31. N. G. Vakhitov and A. A. Kolokolov, “Stationary solutions of the wave equation in a medium with nonlinearity saturation,” Izv. Vyssh. Uchebn. Zaved., Radiofiz.16, 783–789 (1973).
  32. M. Trippenbach, E. Infeld, J. Gocalek, M. Matuszewski, M. Oberthaler, and B. A. Malomed, “Spontaneous symmetry breaking of gap solitons and phase transitions in double-well traps,” Phys. Rev. A78, 013603 (2008). [CrossRef]
  33. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Packing, unpacking, and steering of multicolor solitons in opticallattices,” Opt. Lett.29, 1399–1401 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited