OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3926–3931

Holmium-doped Lu2O3, Y2O3, and Sc2O3 for lasers above 2.1 μm

Philipp Koopmann, Samir Lamrini, Karsten Scholle, Michael Schäfer, Peter Fuhrberg, and Günter Huber  »View Author Affiliations

Optics Express, Vol. 21, Issue 3, pp. 3926-3931 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (798 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Efficient room-temperature laser operation was obtained in the wavelength range from 2117 nm to 2134 nm with Ho:Lu2O3 and Ho:Y2O3 as the active materials. With an FBG-stabilized Tm-doped fiber laser as the pump source, the maximum slope efficiency and output power of the Ho:Y2O3 laser were 63% and 18.8 W, respectively. With Ho:Lu2O3 the respective values were 76% and 25.2 W. With Ho:Sc2O3 as the active material the accessible wavelength range could be expanded to 2158 nm in a diode-pumped setup.

© 2013 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 21, 2012
Revised Manuscript: January 26, 2013
Manuscript Accepted: January 26, 2013
Published: February 8, 2013

Philipp Koopmann, Samir Lamrini, Karsten Scholle, Michael Schäfer, Peter Fuhrberg, and Günter Huber, "Holmium-doped Lu2O3, Y2O3, and Sc2O3 for lasers above 2.1 μm," Opt. Express 21, 3926-3931 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications” in Frontiers in Guided Wave Optics and OptoelectronicsB. Pal, ed. (Intech, 2010), pp. 471–500.
  2. J. H. Taylor and H. W. Yates, “Atmospheric transmission in the infrared,” J. Opt. Soc. Am.47, 223–225 (1957). [CrossRef]
  3. K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth310, 1891–1896 (2008). [CrossRef]
  4. B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys.83, 2772–2787 (1998). [CrossRef]
  5. S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Directly diode-pumped high-energy Ho:YAG oscillator,” Opt. Lett.37, 515–517 (2012). [CrossRef] [PubMed]
  6. R. Peters, C. Kraenkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Suedmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102, 509–514 (2011). [CrossRef]
  7. P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett.36, 948–950 (2011). [CrossRef] [PubMed]
  8. P. Koopmann, “Thulium- and Holmium-Doped Sesquioxides for 2 μm Lasers,” PhD thesis, University of Hamburg (2012).
  9. C. Brandt, N. A. Tolstik, N. V. Kuleshov, K. Petermann, and G. Huber, “Inband pumped Er:Lu2O3 and (Er,Yb):YVO4 Lasers near 1.6 μm for CO2 LIDAR,” in Advanced Solid-State Photonics (Optical Society of America, 2010), p. AMB15.
  10. T. Li, K. Beil, C. Kränkel, and G. Huber, “Efficient high-power continuous wave Er:Lu2O3 laser at 2.85 μm,” Opt. Lett.37, 2568–2570 (2012). [CrossRef] [PubMed]
  11. F. Reichert, M. Fechner, P. Koopmann, C. Brandt, K. Petermann, and G. Huber, “Spectroscopy and laser operation of Nd-doped mixed sesquioxides (Lu1−xScx)2O3,” Appl. Phys. B108, 475–478 (2012). [CrossRef]
  12. G. A. Newburgh, A. Word-Daniels, A. Michael, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Resonantly diode-pumped Ho3+:Y2O3 ceramic 2.1 μm laser,” Opt. Express19, 3604–3611 (2011). [CrossRef] [PubMed]
  13. P. Koopmann, S. Lamrini, K. Scholle, M. Schäfer, P. Fuhrberg, and G. Huber, “Multi-watt laser operation and laser parameters of Ho-doped Lu2O3 at 2.12 μm,” Opt. Mater. Express1, 1447–1456 (2011). [CrossRef]
  14. M. Becker, S. Brückner, M. Leich, E. Lindner, M. Rothhardt, S. Unger, S. Jetschke, and H. Bartelt, “Towards a monolithic fiber laser with deep UV femtosecond-induced fiber Bragg gratings,” Opt. Commun.284, 5770–5773 (2011). [CrossRef]
  15. S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B106, 315–319 (2012). [CrossRef]
  16. J. A. Caird, S. A. Payne, P. Randall Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24, 1077–1099 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited