OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4126–4138

Simulation and experimental investigation of optical transparency in gold island films

Alexander Axelevitch, Boris Apter, and Gady Golan  »View Author Affiliations

Optics Express, Vol. 21, Issue 4, pp. 4126-4138 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2019 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Localized surface plasmons-polaritons represent collective behavior of free electrons confined to metal particles. This effect may be used for enhancing efficiency of solar cells and for other opto-electronic applications. Plasmon resonance strongly affects optical properties of ultra-thin, island-like, metal films. In the present work, the Finite Difference Time Domain (FDTD) method is used to model transmittance spectra of thin gold island films grown on a glass substrate. The FDTD calculations were performed for island structure, corresponding to the Volmer-Weber model of thin film growth. The proposed simulation model is based on fitting of experimental data on nanostructure of ultra-thin gold films, reported in several independent studies, to the FDTD simulation setup. The results of FDTD modeling are then compared to the experimentally measured transmittance spectra of prepared thin gold films and found to be in a good agreement with experimental data.

© 2013 OSA

OCIS Codes
(310.1860) Thin films : Deposition and fabrication
(310.6860) Thin films : Thin films, optical properties
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Thin Films

Original Manuscript: December 10, 2012
Revised Manuscript: January 15, 2013
Manuscript Accepted: January 17, 2013
Published: February 11, 2013

Alexander Axelevitch, Boris Apter, and Gady Golan, "Simulation and experimental investigation of optical transparency in gold island films," Opt. Express 21, 4126-4138 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons On Smooth And Rough Surfaces And On Gratings (Springer, 1988).
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. S. Link, C. Burda, Z. L. Wang, and M. A. El-Sayed, “Electron dynamics in gold and gold–silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation,” J. Chem. Phys.111(3), 1255–1264 (1999). [CrossRef]
  4. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003). [CrossRef]
  5. K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B110(39), 19220–19225 (2006). [CrossRef] [PubMed]
  6. G. Boisde and A. Harmer, Chemical and Biochemical Sensing with Optical Fibers and Waveguides (Arthech House, 1996).
  7. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem.377(3), 528–539 (2003). [CrossRef] [PubMed]
  8. V. M. Agranovich and D. L. Mills, eds., Surface Polaritons-Electromagnetic Waves at Surfaces and Interfaces (North Holland/Elsevier Science, 1982).
  9. H.-E. Ponath and G. I. Stegeman, eds., Nonlinear Surface Electromagnetic Phenomena (Modern Problems in Condensed Matter Science) (North-Holland, 1991).
  10. O. A. Aktsipetrov, E. M. Dubinina, S. S. Elovikov, E. D. Mishina, A. A. Nikulin, N. N. Novikova, and M. S. Strebkov, “The electromagnetic (classical) mechanism of surface enhanced second harmonic generation and Raman scattering in island films,” Solid State Commun.70(11), 1021–1024 (1989). [CrossRef]
  11. J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys.80(5), 1031–1046 (1993). [CrossRef]
  12. A. Karabchevsky, C. Khare, B. Rauschenbach, and I. Abdulhalim, “Microspot sensing based on surface-enhanced fluorescence from nanosculptured thin films,” J. Nanophotonics6, 1–12 (2012).
  13. M. Osawa, “Surface-Enhanced Infrared Absorption,” in Near-Field Optics and Surface Plasmon Polaritons, S. Kawata, ed. (Springer Berlin Heidelberg, 2001), pp. 163–187.
  14. S. Norrman, T. Andersson, C. G. Granqvist, and O. Hunderi, “Optical absorption in discontinuous gold films,” Solid State Commun.23(4), 261–265 (1977). [CrossRef]
  15. C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B16(8), 3513–3534 (1977). [CrossRef]
  16. S. Norman, T. Andersson, and C. G. Granqvist, “Optical properties of discontinuous gold films,” Phys. Rev. B18, 647–695 (1978).
  17. F. Parmigiani, G. Samoggia, and G. P. Ferraris, “Optical properties of sputtered gold clusters,” J. Appl. Phys.57(7), 2524–2528 (1985). [CrossRef]
  18. R. Lazari, J. Jupille, and Y. Borensztein, “In situ study of a thin metal film by optical means,” Appl. Surf. Sci.142(1-4), 451–454 (1999). [CrossRef]
  19. D. Dalacu and L. Martinu, “Optical properties of discontinuous gold films: finite-size effects,” J. Opt. Soc. Am. B18(1), 85–92 (2001). [CrossRef]
  20. I. Doron-Mor, Z. Barkay, N. Filip-Granit, A. Vaskevich, and I. Rubinstein, “Ultrathin gold island films on silanized glass. Morphology and optical properties,” Chem. Mater.16(18), 3476–3483 (2004). [CrossRef]
  21. J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, and V. Svorčík, “Properties of gold nanostructures sputtered on glass,” Nanoscale Res. Lett.6(1), 96 (2011). [CrossRef] [PubMed]
  22. A. Axelevitch, B. Gorenstein, and G. Golan, “Investigation of optical transmission in thin metal films,” Physics Procedia32, 1–13 (2012). [CrossRef]
  23. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag.14(3), 302–307 (1966). [CrossRef]
  24. J. E. Greene, “Thin film nucleation, growth, and microstructural evolution: an atomic scale view,” in Handbook of Deposition Technologies for Films and Coating, 3rd Ed., Ed. P. M. Martin, ed. (Elsevier, 2010), Chap. 12, pp. 554–620.
  25. M. M. Wind, J. Vlieger, and D. Bedeaux, “The polarizability of a truncated sphere on a substrate I,” Physica A141(1), 33–57 (1987). [CrossRef]
  26. M. M. Wind, A. Bobbert, J. Vlieger, and D. Bedeaux, “The polarizability of a truncated sphere on a substrate II,” Physica A143(1-2), 164–182 (1987). [CrossRef]
  27. M. M. Wind, P. A. Bobbert, J. Vlieger, and D. Bedeaux, “The polarizability of truncated spheres and oblate spheroids on a substrate: comparison with experimental results,” Thin Solid Films164, 57–62 (1988). [CrossRef]
  28. M. M. Wind, P. A. Bobbert, J. Vlieger, and D. Bedeaux, “Optical properties of 2D-systems of small particles on a substrate,” Physica A157(1), 269–278 (1989). [CrossRef]
  29. I. Simonsen, R. Lazzari, J. Jupille, and S. Roux, “Numerical modeling of the optical response of supported metallic particles,” Phys. Rev. B61(11), 7722–7733 (2000). [CrossRef]
  30. W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Thin films by regular patterns of metal nanoparticles: tailoring the optical properties by nano design,” Appl. Phys. B63, 381–384 (1996).
  31. J. Grand, P.-M. Adam, A.-S. Grimault, A. E. Vial, M. L. de la Chapelle, and J.-L. Bijeon JS. Kostcheev and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory,” Plasmonics1, 135–140 (2006).
  32. http://www.lumerical.com/
  33. Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, 1998).
  34. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  35. R. W. Berry, P. M. Hall, and M. T. Harris, Thin Film Technology (Van Nostrand, 1968).
  36. N. L. Dmitruk and A. V. Korovin, “Physical nature of anomalous optical transmission of thin absorptive corrugated films,” JETP Lett.89(2), 68–72 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited