OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4167–4173

Broadband downshifting luminescence in Cr3+-Yb3+ codoped garnet for efficient photovoltaic generation

Song Ye, Jiajia Zhou, Shiting Wang, Rongxuan Hu, Deping Wang, and Jianrong Qiu  »View Author Affiliations

Optics Express, Vol. 21, Issue 4, pp. 4167-4173 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1224 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Cr3+-Yb3+ codoped YAG crystals were synthesized by the solid state reaction method, in which the intense near-infrared emission around 1000 nm originated from Yb3+ 2F5/22F7/2 transition was obtained due to the efficient energy transfer from Cr3+ to Yb3+. The stable and transient spectral measurements revealed that the phonon assistant energy transfer process is responsible for the energy transfer from Cr3+ to Yb3+ upon both the excitations of Cr3+: 4T1 and 4T2 energy levels. Due to the effective absorption of Cr3+ in the visible region in YAG and the efficient energy transfer to Yb3+, this material can be developed as spectral convertors to improve silicon solar cell photovoltaic conversion efficiency.

© 2013 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:
Solar Energy

Original Manuscript: December 4, 2012
Revised Manuscript: January 18, 2013
Manuscript Accepted: January 19, 2013
Published: February 11, 2013

Virtual Issues
European Conference on Optical Communication 2012 (2012) Optics Express

Song Ye, Jiajia Zhou, Shiting Wang, Rongxuan Hu, Deping Wang, and Jianrong Qiu, "Broadband downshifting luminescence in Cr3+-Yb3+ codoped garnet for efficient photovoltaic generation," Opt. Express 21, 4167-4173 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near–infrared quantum cutting for photovoltaic,” Adv. Mater. (Deerfield Beach Fla.)21(30), 1–5 (2009). [CrossRef]
  2. P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B71(1), 014119 (2005). [CrossRef]
  3. Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative donwnconversion in GdAL3(BO3)3:RE3+, Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett.91, 051903 1–3 (2007).
  4. W. J. Zhang, D. C. Yu, J. P. Zhang, Q. Qian, S. H. Xu, Z. M. Yang, and Q. Y. Zhang, “Near-infrared quantum splitting in Ho3+: LaF3 nanocrystals embedded germinate glass ceramic,” Opt. Mater. Express2(5), 636–643 (2012). [CrossRef]
  5. S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett.92(14), 141112 (2008). [CrossRef]
  6. S. Ye, B. Zhu, J. Luo, J. X. Chen, G. Lakshminarayana, and J. R. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express16(12), 8989–8994 (2008). [CrossRef] [PubMed]
  7. D. Q. Chen, Y. L. Yu, Y. S. Wang, P. Huang, and F. Y. Wen, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+: TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C113(16), 6406–6410 (2009). [CrossRef]
  8. J. J. Zhou, Y. X. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. H. Xie, and J. R. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ to Yb3+ in glasses,” Appl. Phys. Lett.95(14), 141101 (2009). [CrossRef]
  9. Y. Teng, J. J. Zhou, X. F. Liu, S. Ye, and J. R. Qiu, “Efficient broadband near-infrared quantum cutting for solar cells,” Opt. Express18(9), 9671–9676 (2010). [CrossRef] [PubMed]
  10. D. Q. Chen, Y. S. Wang, Y. L. Yu. P. Huang, and F. Y. Wang, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ toYb3+ in borate glasses,” J. Appl. Phys.104, 116105 1–3 (2008).
  11. J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ co-Doped YAG ceramic,” J. Appl. Phys.106(4), 043101 (2009). [CrossRef]
  12. R. Zhou, Y. Kou, X. Wei, Y. Chen, and M. Yin, “Broadband downconversion based near-infrared quantum cutting via cooperative energy transfer in YnbO4:Bi3+, Yb3+ phosphor,” Appl. Phys. B107(2), 483–487 (2012). [CrossRef]
  13. S. Ye, N. Jiang, J. J. Zhou, D. P. Wang, and J. R. Qiu, “Optical property and energy transfer in the ZnO-LiYbO2 hybrid phosphors under the indirect near-UV excitation,” J. Electrochem. Soc.159(1), H11–H15 (2012). [CrossRef]
  14. S. Ye, N. Jiang, F. He, X. F. Liu, B. Zhu, Y. Teng, and J. R. Qiu, “Intense near-infrared emission from ZnO-LiYbO2 hybrid phosphors through efficient energy transfer from ZnO to Yb3+,” Opt. Express18(2), 639–644 (2010). [CrossRef] [PubMed]
  15. S. Ye, B. Zhu, J. Luo, Y. Teng, J. X. Chen, G. Lakshminarayana, G. D. Qian, and J. R. Qiu, “Energy transfer between silicon-oxygen-related defects and Yb3+ in transparent glass ceramics containing Ba2TiSi2O8 nanocrystals,” Appl. Phys. Lett.93(18), 181110 (2008). [CrossRef]
  16. T. Saiki, K. Imasaki, S. Motokoshi, C. Yamanaka, H. Fujita, M. Nakatsuka, and Y. Izawa, “Disk-type Nd/Cr: YAG ceramic lasers pumped by arc-metal-halide-lamp,” Opt. Commun.268(1), 155–159 (2006). [CrossRef]
  17. S. Heer, M. Wermuth, K. Kramer, and H. U. Gudel, “Sharp 2E upconversion luminescence of Cr3+ in Y3Ga5O12 codoped with Cr3+ and Yb3+,” Phys. Rev. B65(12), 125112 (2002). [CrossRef]
  18. S. Heer, M. Wermuth, K. Kramer, D. Ehrentraut, and H. U. Gudel, “Up-conversion excitation of sharp Cr3+ 2E emission in YGG and YAG godoped with Cr3+ and Yb3+,” J. Lumin.94–95, 337–341 (2001). [CrossRef]
  19. K. Fujioka, T. Saiki, S. Motokoshi, Y. Fujimoto, H. Fujita, and M. Nakatsuka, “Luminescence properties of highly Cr co-doped Nd:YAG powder produced by sol-gel method,” J. Lumin.130(3), 455–459 (2010). [CrossRef]
  20. H. Szymczak, M. Wardzynska, and I. E. Mylnikova, “Optical spectrum of Cr3+ in the spinel LiGa5O8,” J. Phys. C Solid State Phys.8(22), 3937–3943 (1975). [CrossRef]
  21. L. M. Shao and X. P. Jing, “Energy transfer and luminescent properties of Ce3+, Cr3+ co-doped Y3Al5O12,” J. Lumin.131(6), 1216–1221 (2011). [CrossRef]
  22. J. P. Hehir, M. O. Henry, J. P. Larkin, and G. F. Imbusch, “Nature of the luminescence from YAG:Cr3+,” J. Phys. C Solid State Phys.7(12), 2241–2248 (1974). [CrossRef]
  23. L. van Pieterson, M. Heeroma, E. de Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin.91(3-4), 177–193 (2000). [CrossRef]
  24. D. L. Wood, J. Ferguson, K. Knox, and J. F. Dillon, “Crystal-field spectra of d3,7 ions. III. spectrum of Cr3+ in various octahedral crystal fields,” J. Chem. Phys.39(4), 890–898 (1963). [CrossRef]
  25. M. N. Sanz-Ortiz, F. Rodriguez, I. Hernandez, R. Valiente, and S. Kuck, “Origin of the 2E←→4T2 Fano resonance in Cr3+-doped LiCaAlF6: Pressure-induced excited-state crossover,” Phys. Rev. B81(4), 045114 (2010). [CrossRef]
  26. R. Martín-Rodríguez, R. Valiente, F. Rodríguez, and M. Bettinelli, “Temperature and pressure dependence of the optical properties of Cr3+-doped Gd3Ga5O12 nanoparticles,” Nanotechnology22(26), 265707 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited