OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4174–4182

Intra-channel nonlinearity compensation for PM-16QAM traffic co-propagating with 28Gbaud m-ary QAM neighbours

Danish Rafique, Stylianos Sygletos, and Andrew D. Ellis  »View Author Affiliations

Optics Express, Vol. 21, Issue 4, pp. 4174-4182 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1224 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We quantify the benefits of intra-channel nonlinear compensation in meshed optical networks, in view of network configuration, fibre design aspect, and dispersion management. We report that for a WDM optical transport network employing flexible 28Gbaud PM-mQAM transponders with no in-line dispersion compensation, intra-channel nonlinear compensation, for PM-16QAM through traffic, offers significant improvements of up to 4dB in nonlinear tolerance (Q-factor) irrespective of the co-propagating modulation format, and that this benefit is further enhanced (1.5dB) by increasing local link dispersion. For dispersion managed links, we further report that advantages of intra-channel nonlinear compensation increase with in-line dispersion compensation ratio, with 1.5dB improvements after 95% in-line dispersion compensation, compared to uncompensated transmission.

© 2013 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.4254) Fiber optics and optical communications : Networks, combinatorial network design

ToC Category:
Transmission Systems and Network Elements

Original Manuscript: September 4, 2012
Revised Manuscript: October 30, 2012
Manuscript Accepted: October 30, 2012
Published: February 11, 2013

Danish Rafique, Stylianos Sygletos, and Andrew D. Ellis, "Intra-channel nonlinearity compensation for PM-16QAM traffic co-propagating with 28Gbaud m-ary QAM neighbours," Opt. Express 21, 4174-4182 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the Non-Linear Shannon Limit,” J. Lightwave Technol.28(4), 423–433 (2010). [CrossRef]
  2. P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally Efficient Long-Haul Optical Networking Using 112-Gb/s Polarization-Multiplexed 16-QAM,” J. Lightwave Technol.28(4), 547–556 (2010). [CrossRef]
  3. M. Suzuki, I. Morita, N. Edagawa, S. Yamamoto, H. Taga, and S. Akiba, “Reduction of Gordon-Haus timing jitter by periodic dispersion compensation in soliton transmission,” Electron. Lett.31(23), 2027–2029 (1995). [CrossRef]
  4. C. Fürst, C. Scheerer, and G. Mohs, J. -. Elbers, and C. Glingener, “Influence of the dispersion map on limitations due to cross-phase modulation in WDM multispan transmission systems,” Optical Fiber Communication Conference, OFC ’01, MF4 (2001).
  5. A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Optical vs. Electronic Chromatic Dispersion Compensation in WDM Coherent PM-QPSK Systems at 111 Gbit/s,” Optical Fiber Communication Conference, OFC ’08, JThA57 (2008).
  6. X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express16(2), 880–888 (2008). [CrossRef] [PubMed]
  7. D. Rafique, J. Zhao, and A. D. Ellis, “Digital back-propagation for spectrally efficient WDM 112 Gbit/s PM m-ary QAM transmission,” Opt. Express19(6), 5219–5224 (2011). [CrossRef] [PubMed]
  8. S. J. Savory, G. Gavioli, E. Torrengo, and P. Poggiolini, “Impact of Interchannel Nonlinearities on a Split-Step Intrachannel Nonlinear Equalizer,” IEEE Photon. Technol. Lett.22(10), 673–675 (2010). [CrossRef]
  9. X. Zhou, E. F. Mateo, and G. Li, “Fiber Nonlinearity Management-from Carrier Perspective,” Optical Fiber Communication Conference, OFC ’11, NThB4 (2011).
  10. A. Nag, M. Tornatore, and B. Mukherjee, “Optical Network Design With Mixed Line Rates and Multiple Modulation Formats,” J. Lightwave Technol.28(4), 466–475 (2010). [CrossRef]
  11. C. Meusburger, D. A. Schupke, and A. Lord, “Optimizing the Migration of Channels with Higher Bitrates,” J. Lightwave Technol.28(4), 608–615 (2010). [CrossRef]
  12. D. Rafique and A. D. Ellis, “Nonlinear Penalties in Dynamic Optical Networks Employing Autonomous Transponders,” IEEE Photon. Technol. Lett.23(17), 1213–1215 (2011). [CrossRef]
  13. T. Wuth, M. W. Chbat, and V. F. Kamalov, “Multi-rate (100G/40G/10G) Transport Over Deployed Optical Networks,” Optical Fiber Communication Conference, OFC’08, NTuB3, (2008).
  14. D.v.d Borne, C.R.S. Fludger, T. Duthel, T. Wuth, E.D. Schmidt, C. Schulien, E. Gottwald,G.D. Khoe, and H. de Waardt, “Carrier phase estimation for coherent equalization of 43-Gb/s POLMUX-NRZDQPSK transmission with 10.7-Gb/s NRZ neughbours,” ECOC'07, 7.2.3 (2007).
  15. C. Fürst, J. Elbers, H. Wernz, H. Griesser, S. Herbst, M. Camera, F. Cavaliere, A. Ehrhardt, D. Breuer, D. Fritzsche, S. Vorbeck, M. Schneiders, W. Weiershausen, R. Leppla, J. Wendler, M. Schroedel, T. Wuth, C. Fludger, T. Duthel, B. Milivojevic, and C. Schulien, “Analysis of Crosstalk in Mixed 43 Gb/s RZ-DQPSK and 10.7 Gb/s DWDM Systems at 50 GHz Channel Spacing,” Optical Fiber Communication Conference, OFC’07, OThS2 (2007).
  16. R.-J. Essiambre, G. Raybon, and B. Mikkelsen, Optical Fiber Telecommunications IV (Academic, 2002), chap.6.
  17. C. S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E.-D. Schmidt, T. Wuth, J. Geyer, E. De Man, Khoe Giok-Djan, and H. de Waardt, “Coherent Equalization and POLMUX-RZ-DQPSK for Robust 100-GE Transmission,” J. Lightwave Technol.26(1), 64–72 (2008). [CrossRef]
  18. D. Rafique and A. D. Ellis, “Nonlinear penalties in long-haul optical networks employing dynamic transponders,” Opt. Express19(10), 9044–9049 (2011). [CrossRef] [PubMed]
  19. D. Rafique and A. D. Ellis, “Nonlinear and ROADM induced penalties in 28 Gbaud dynamic optical mesh networks employing electronic signal processing,” Opt. Express19(18), 16739–16748 (2011). [CrossRef] [PubMed]
  20. J. Tang, “The multispan effects of Kerr nonlinearity and amplifier noises on Shannon channel capacity of a dispersion-free nonlinear optical fiber,” J. Lightwave Technol.19(8), 1110–1115 (2001). [CrossRef]
  21. K. Mukasa, K. Imamura, I. Shimotakahara, T. Yagi, and K. Kokura, “Dispersion compensating fiber used as a transmission fiber: inverse/reverse dispersion fiber,” OFC3(5), 292–339 (2006).
  22. D. Rafique, M. Mussolin, M. Forzati, J. Mårtensson, M. N. Chugtai, and A. D. Ellis, “Compensation of intra-channel nonlinear fibre impairments using simplified digital back-propagation algorithm,” Opt. Express19(10), 9453–9460 (2011). [CrossRef] [PubMed]
  23. L. Li, Z. Tao, L. Dou, W. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Implementation Efficient Nonlinear Equalizer Based on Correlated Digital Backpropagation,” Optical Fiber Communication Conference, OFC ‘11, OWW3 (2011).
  24. L. Zhu and G. Li, “Nonlinearity compensation using dispersion-folded digital backward propagation,” Opt. Express20(13), 14362–14370 (2012). [CrossRef] [PubMed]
  25. D. Rafique and A. D. Ellis, “Various Nonlinearity Mitigation Techniques Employing Optical and Electronic Approaches,” IEEE Photon. Technol. Lett.23(23), 1838–1840 (2011). [CrossRef]
  26. T. Tanimura, S. Oda, T. Hoshida, L. Li, Z. Tao, and J. C. Rasmussen, “Experimental Characterization of Nonlinearity Mitigation by Digital Back Propagation and Nonlinear Polarization Crosstalk Canceller under High PMD condition,” Optical Fiber Communication Conference, OFC’11, JWA020 (2011).
  27. L. B. Du and A. J. Lowery, “Experimental Demonstration of XPM Compensation for CO-OFDM Systems with Periodic Dispersion Maps,” Optical Fiber Communication Conference, OFC’11, OWW2 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited