OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4205–4214

An optochemically organized nonlinear waveguide lattice with primitive cubic symmetry

Matthew R. Ponte, Robert Welch, and Kalaichelvi Saravanamuttu  »View Author Affiliations


Optics Express, Vol. 21, Issue 4, pp. 4205-4214 (2013)
http://dx.doi.org/10.1364/OE.21.004205


View Full Text Article

Enhanced HTML    Acrobat PDF (1645 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the first example of a primitive cubic lattice assembled spontaneously from three mutually orthogonal and intersecting arrays of cylindrical, multimode waveguides. The lattice is generated in a single, room-temperature step with separate (mutually incoherent) incandescent light bulbs. To demonstrate its potential as a nonlinear photonic lattice, we generated a self-trapped lattice beam of incoherent white light. These two findings open entirely new experimental opportunities to study the behavior of spatially and temporally incoherent, polychromatic lattice solitons in 3-D Bravais lattices.

© 2013 OSA

OCIS Codes
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(160.5470) Materials : Polymers
(190.0190) Nonlinear optics : Nonlinear optics
(190.5940) Nonlinear optics : Self-action effects
(260.5950) Physical optics : Self-focusing
(350.3450) Other areas of optics : Laser-induced chemistry
(110.6895) Imaging systems : Three-dimensional lithography
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Nonlinear Optics

History
Original Manuscript: October 1, 2012
Revised Manuscript: November 16, 2012
Manuscript Accepted: November 26, 2012
Published: February 12, 2013

Citation
Matthew R. Ponte, Robert Welch, and Kalaichelvi Saravanamuttu, "An optochemically organized nonlinear waveguide lattice with primitive cubic symmetry," Opt. Express 21, 4205-4214 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-4-4205


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Mitchell and M. Segev, “Self-trapping of incoherent white light,” Nature387(6636), 858–883 (1997). [CrossRef]
  2. H. Buljan, A. Šiber, M. Soljacić, and M. Segev, “Propagation of incoherent “white” light and modulation instability in noninstantaneous nonlinear media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(33 Pt 2A), 035601 (2002). [CrossRef] [PubMed]
  3. H. Buljan, A. Šiber, M. Soljacić, T. Schwartz, M. Segev, and D. N. Christodoulides, “Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.68(3), 036607 (2003). [CrossRef] [PubMed]
  4. H. Buljan, M. Segev, M. Soljacić, N. K. Efremidis, and D. N. Christodoulides, “White-light solitons,” Opt. Lett.28(14), 1239–1241 (2003). [CrossRef] [PubMed]
  5. T. Schwartz, T. Carmon, H. Buljan, and M. Segev, “Spontaneous pattern formation with incoherent white light,” Phys. Rev. Lett.93(22), 223901 (2004). [CrossRef] [PubMed]
  6. J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc.128(2), 406–407 (2006). [CrossRef] [PubMed]
  7. J. Zhang and K. Saravanamuttu, “The dynamics of self-trapped beams of incoherent white light in a free-radical photopolymerizable medium,” J. Am. Chem. Soc.128(46), 14913–14923 (2006). [CrossRef] [PubMed]
  8. K. Kasala and K. Saravanamuttu, “An experimental study of the interactions of self-trapped white light beams in a photopolymer,” Appl. Phys. Lett.93(5), 051111 (2008). [CrossRef]
  9. I. B. Burgess, W. E. Shimmell, and K. Saravanamuttu, “Spontaneous pattern formation due to modulation instability of incoherent white light in a photopolymerizable medium,” J. Am. Chem. Soc.129(15), 4738–4746 (2007). [CrossRef] [PubMed]
  10. K. Kasala and K. Saravanamuttu, “Optochemical self-organisation of a single-step route to intersecting and interleaving 3-D optical and waveguide lattices,” J. Mater. Chem.22, 12281–12287 (2012). [CrossRef]
  11. I. B. Burgess, M. Ponte, and K. Saravanamuttu, “Spontaneous formation of 3-D optical and structural lattices from two orthogonal and mutually incoherent beams of white light propagating in a photopolymerisable material,” J. Mater. Chem.18(35), 4133–4139 (2008). [CrossRef]
  12. Z. Chen, J. Klinger, and D. N. Christodoulides, “Induced modulation instability of partially spatially incoherent light with varying perturbation periods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(6), 066601 (2002). [CrossRef] [PubMed]
  13. W. E. Shimmell, “Controlling Polymer Microstructure Through the Coherence of Light,” M.Sc. thesis, (2009)
  14. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000). [CrossRef] [PubMed]
  15. R. Pezer, H. Buljan, G. Bartal, M. Segev, and J. W. Fleischer, “Incoherent white-light solitons in nonlinear periodic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(5), 056608 (2006). [CrossRef] [PubMed]
  16. M. Born and E. Wolf, Principles of Optics, Electromagnetic theory of propagation, interference and diffraction of light, 7th ed. (Cambridge University Press, UK, 2002), Ch. 7.
  17. K. Kasala and K. Saravanamuttu, “Optochemical self-organization in a spatially modulated incandescent field: a single-step route to black and bright polymer lattices” (submitted)
  18. J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of Discrete Solitons in Optically Induced Real Time Waveguide Arrays,” Phys. Rev. Lett.90(2), 023902 (2003). [CrossRef] [PubMed]
  19. G. Bartal, O. Manela, O. Cohen, J. W. Fleischer, and M. Segev, “Observation of Second-Band Vortex Solitons in 2D Photonic Lattices,” Phys. Rev. Lett.95(5), 053904 (2005). [CrossRef] [PubMed]
  20. O. Cohen, G. Bartal, H. Buljan, T. Carmon, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Observation of random-phase lattice solitons,” Nature433(7025), 500–503 (2005). [CrossRef] [PubMed]
  21. H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, “Discrete Solitons and Soliton-Induced Dislocations in Partially Coherent Photonic Lattices,” Phys. Rev. Lett.92(12), 123902 (2004). [CrossRef] [PubMed]
  22. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature422(6928), 147–150 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (1883 KB)      QuickTime
» Media 2: AVI (3679 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited