OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4235–4243

The influence of substrate on SOI photonic crystal thermo-optic devices

Weiwei Song, Manjit Chahal, George K. Celler, Yogesh Jaluria, Graham T. Reed, and Wei Jiang  »View Author Affiliations


Optics Express, Vol. 21, Issue 4, pp. 4235-4243 (2013)
http://dx.doi.org/10.1364/OE.21.004235


View Full Text Article

Enhanced HTML    Acrobat PDF (1318 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the influence of the substrate on a photonic crystal thermo-optic device on a silicon-on-insulator (SOI) platform. The substrate-induced thermo-optic tuning is obtained as a function of key physical parameters, based on a semi-analytic theory that agrees well with numeric simulations. It is shown that for some devices, the substrate’s contribution to the thermo-optic tuning can exceed 10% for a heater located in the waveguide core and much higher for some other configurations. The slow response of the substrate may also significantly slow down the overall response time of the device. Strategies of minimizing the substrate’s influence are discussed.

© 2013 OSA

OCIS Codes
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(130.4815) Integrated optics : Optical switching devices
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Photonic Crystals

History
Original Manuscript: November 9, 2012
Revised Manuscript: December 17, 2012
Manuscript Accepted: December 19, 2012
Published: February 12, 2013

Citation
Weiwei Song, Manjit Chahal, George K. Celler, Yogesh Jaluria, Graham T. Reed, and Wei Jiang, "The influence of substrate on SOI photonic crystal thermo-optic devices," Opt. Express 21, 4235-4243 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-4-4235


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006). [CrossRef]
  2. G. T. Reed, ed., Silicon Photonics: the State of the Art (Wiley, 2008).
  3. G. K. Celler and S. Cristoloveanu, “Frontiers of silicon-on-insulator,” J. Appl. Phys.93(9), 4955–4978 (2003). [CrossRef]
  4. L. Gu, W. Jiang, X. Chen, and R. T. Chen, “Physical mechanism of p-i-n diode based photonic crystal silicon electrooptic modulators for gigahertz operation,” IEEE J. Sel. Top. Quantum Electron.14(4), 1132–1139 (2008). [CrossRef]
  5. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005). [CrossRef] [PubMed]
  6. M. T. Tinker and J.-B. Lee, “Thermal and optical simulation of a photonic crystal light modulator based on the thermo-optic shift of the cut-off frequency,” Opt. Express13(18), 7174–7188 (2005). [CrossRef] [PubMed]
  7. T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, “Thermooptic switch based on photonic-crystal line-defect waveguides,” IEEE Photon. Technol. Lett.17(10), 2083–2085 (2005). [CrossRef]
  8. L. Gu, W. Jiang, X. Chen, and R. T. Chen, “Thermooptically tuned photonic crystal waveguide silicon-on-insulator Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett.19(5), 342–344 (2007). [CrossRef]
  9. D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett.33(2), 147–149 (2008). [CrossRef] [PubMed]
  10. N. Ishikura, T. Baba, E. Kuramochi, and M. Notomi, “Large tunable fractional delay of slow light pulse and its application to fast optical correlator,” Opt. Express19(24), 24102–24108 (2011). [CrossRef] [PubMed]
  11. L. Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen, “High speed silicon photonic crystal waveguide modulator for low voltage operation,” Appl. Phys. Lett.90(7), 071105 (2007). [CrossRef]
  12. M. Chahal, G. K. Celler, Y. Jaluria, and W. Jiang, “Thermo-optic characteristics and switching power limit of slow-light photonic crystal structures on a silicon-on-insulator platform,” Opt. Express20(4), 4225–4231 (2012). [CrossRef] [PubMed]
  13. Y. Jaluria, Design and Optimization of Thermal Systems, 2nd ed. (CRC Press, 2008).
  14. Y. Jaluria, Natural Convection Heat and Mass Transfer. (Pergamon Press, 1980).
  15. R. F. David, “Computerized thermal analysis of hybrid circuits,” IEEE Trans. Parts Hybrids Packag.13(3), 283–290 (1977). [CrossRef]
  16. F. N. Masana, “A closed form solution of junction to substrate thermal resistance in semiconductor chips,” IEEE Trans. Comp. Packag, Manufact. Technol.19, 539–545 (1996).
  17. W. H. Hayt and J. A. Buck, Engineering Electromagnetics, 7th ed. (McGraw-Hill, 2006).
  18. F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed. (Wiley, 2007).
  19. W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: an analytic approach,” Phys. Rev. B82(23), 235306 (2010). [CrossRef]
  20. M. Y. Chen, H. Subbaraman, and R. T. Chen, “Photonic crystal fiber beamformer for multiple X band phased-array antenna transmissions,” IEEE Photon. Technol. Lett.20(5), 375–377 (2008). [CrossRef]
  21. E. Brookner, Practical Phased Array Antenna Systems. (Artech House, 1991), Chap. 1.
  22. J. A. Rogers, M. G. Lagally, and R. G. Nuzzo, “Synthesis assembly and applications of semiconductor nanomembranes,” Nature477(7362), 45–53 (2011). [CrossRef] [PubMed]
  23. S. Huang, J. Luo, H. L. Yip, A. Ayazi, X. H. Zhou, M. Gould, A. Chen, T. Baehr-Jones, M. Hochberg, and A. K. Y. Jen, “Efficient poling of electro-optic polymers in thin films and silicon slot waveguides by detachable pyroelectric crystals,” Adv. Mater. (Deerfield Beach Fla.)24(10), OP42–OP47 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited