OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4263–4279

Feasibility study for compressive multi-dimensional integral imaging

Ryoichi Horisaki, Xiao Xiao, Jun Tanida, and Bahram Javidi  »View Author Affiliations


Optics Express, Vol. 21, Issue 4, pp. 4263-4279 (2013)
http://dx.doi.org/10.1364/OE.21.004263


View Full Text Article

Enhanced HTML    Acrobat PDF (9191 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper describes a generalized framework for single-exposure acquisition of multi-dimensional scene information using integral imaging system based on compressive sensing. In the proposed system, a multi-dimensional scene containing a plurality of information such as 3D coordinates, spectral and polarimetric data is captured by integral imaging optics. The image sensor uses pixel-wise filtering elements arranged randomly. The multi-dimensional original object is reconstructed using an algorithm with a sparsity constraint. The proposed system is demonstrated with simulations and feasible optical experiments based on synthetic aperture integral imaging using multi-dimensional objects including 3D coordinates, spectral, and polarimetric information.

© 2013 OSA

OCIS Codes
(110.1758) Imaging systems : Computational imaging
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:
Imaging Systems

History
Original Manuscript: November 16, 2012
Revised Manuscript: January 25, 2013
Manuscript Accepted: January 29, 2013
Published: February 12, 2013

Citation
Ryoichi Horisaki, Xiao Xiao, Jun Tanida, and Bahram Javidi, "Feasibility study for compressive multi-dimensional integral imaging," Opt. Express 21, 4263-4279 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-4-4263


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Okutomi and T. Kanade, “A multiple-baseline stereo,” IEEE Trans. Pattern Anal. Mach. Intell.15, 353–363 (1993). [CrossRef]
  2. G. M. Lippmann, “La photographie integrale,” Comptes-Rendus Academie des Sciences146, 446–451 (1908).
  3. C. B. Burckhardt, “Optimum parameters and resolution limitation of integral photography,” J. Opt. Soc. Am.58, 71–74 (1968). [CrossRef]
  4. L. Yang, M. McCormick, and N. Davies, “Discussion of the optics of a new 3-D imaging systems,” Appl. Opt.27, 4529–4534 (1988). [CrossRef] [PubMed]
  5. F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE94, 490–501 (2006). [CrossRef]
  6. M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE99, 556 –575 (2011). [CrossRef]
  7. R. Horisaki, S. Irie, Y. Ogura, and J. Tanida, “Three-dimensional information acquisition using a compound imaging system,” Optical Review14, 347–350 (2007). [CrossRef]
  8. M. DaneshPanah and B. Javidi, “Profilometry and optical slicing by passive three-dimensional imaging,” Opt. Lett.34, 1105–1107 (2009). [CrossRef] [PubMed]
  9. R. Shogenji, Y. Kitamura, K. Yamada, S. Miyatake, and J. Tanida, “Multispectral imaging using compact compound optics,” Opt. Express12, 1643–1655 (2004). [CrossRef] [PubMed]
  10. R. J. Plemmons, S. Prasad, S. Matthews, M. Mirotznik, R. Barnard, B. Gray, V. P. Pauca, T. C. Torgersen, J. van der Gracht, and G. Behrmann, “PERIODIC: Integrated computational array imaging technology,” in “Computational Optical Sensing and Imaging,” (2007), p. CMA1.
  11. B. Javidi, S.-H. Hong, and O. Matoba, “Multidimensional optical sensor and imaging system,” Appl. Opt.45, 2986–2994 (2006). [CrossRef] [PubMed]
  12. R. Horstmeyer, G. Euliss, R. Athale, and M. Levoy, “Flexible multimodal camera using a light field architecture,” in “Proc. ICCP09,” (2009), pp. 1–8.
  13. D. L. Donoho, “Compressed sensing,” IEEE Trans. Info. Theory52, 1289–1306 (2006). [CrossRef]
  14. R. Baraniuk, “Compressive sensing,” IEEE Sig. Processing Mag.24, 118–121 (2007). [CrossRef]
  15. E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Sig. Processing Mag.25, 21–30 (2008). [CrossRef]
  16. R. Horisaki, K. Choi, J. Hahn, J. Tanida, and D. J. Brady, “Generalized sampling using a compound-eye imaging system for multi-dimensional object acquisition,” Opt. Express18, 19367–19378 (2010). [CrossRef] [PubMed]
  17. R. Horisaki and J. Tanida, “Multi-channel data acquisition using multiplexed imaging with spatial encoding,” Opt. Express18, 23041–23053 (2010). [CrossRef] [PubMed]
  18. R. Horisaki and J. Tanida, “Multidimensional TOMBO imaging and its applications,” in Proc. SPIE (2011), 8165, pp. 816516. [CrossRef]
  19. R. Horisaki, J. Tanida, A. Stern, and B. Javidi, “Multidimensional imaging using compressive Fresnel holography,” Opt. Lett.37, 2013–2015 (2012). [CrossRef] [PubMed]
  20. Y. Rivenson, A. Stern, and B. Javidi, “Compressive Fresnel holography,” J. Display Technol.6, 506–509 (2010). [CrossRef]
  21. K. Choi, R. Horisaki, J. Hahn, S. Lim, D. L. Marks, T. J. Schulz, and D. J. Brady, “Compressive holography of diffuse objects,” Appl. Opt.49, H1–H10 (2010). [CrossRef] [PubMed]
  22. E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Info. Theory52, 489–509 (2006). [CrossRef]
  23. J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Proc.16, 2992–3004 (2007). [CrossRef]
  24. L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D60, 259–268 (1992). [CrossRef]
  25. S.-H. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express12, 483–491 (2004). [CrossRef] [PubMed]
  26. J. E. Solomon, “Polarization imaging,” Appl. Opt.20, 1537–1544 (1981). [CrossRef] [PubMed]
  27. S. G. Demos and R. R. Alfano, “Optical polarization imaging,” Appl. Opt.36, 150–155 (1997). [CrossRef] [PubMed]
  28. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt.45, 5453–5469 (2006). [CrossRef] [PubMed]
  29. X. Xiao, B. Javidi, G. Saavedra, M. Eismann, and M. Martinez-Corral, “Three-dimensional polarimetric computational integral imaging,” Opt. Express20, 15481–15488 (2012). [CrossRef] [PubMed]
  30. Y. Rivenson, A. Rot, S. Balber, A. Stern, and J. Rosen, “Recovery of partially occluded objects by applying compressive fresnel holography,” Opt. Lett.37, 1757–1759 (2012). [CrossRef] [PubMed]
  31. T. Sato, T. Araki, Y. Sasaki, T. Tsuru, T. Tadokoro, and S. Kawakami, “Compact ellipsometer employing a static polarimeter module with arrayed polarizer and wave-plate elements,” Appl. Opt.46, 4963–4967 (2007). [CrossRef] [PubMed]
  32. Y. Rivenson and A. Stern, “Conditions for practicing compressive fresnel holography,” Opt. Lett.36, 3365–3367 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited