OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4319–4327

Blue-phase liquid crystal cored optical fiber array with photonic bandgaps and nonlinear transmission properties

Iam Choon Khoo, Kuan Lung Hong, Shuo Zhao, Ding Ma, and Tsung-Hsien Lin  »View Author Affiliations

Optics Express, Vol. 21, Issue 4, pp. 4319-4327 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1174 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Blue-phase liquid crystal (BPLC) is introduced into the pores of capillary arrays to fabricate fiber arrays. Owing to the photonic-crystals like properties of BPLC, these fiber arrays exhibit temperature dependent photonic bandgaps in the visible spectrum. With the cores maintained in isotropic as well as the Blue phases, the fiber arrays allow high quality image transmission when inserted in the focal plane of a 1x telescope. Nonlinear transmission and optical limiting action on a cw white-light continuum laser is also observed and is attributed to laser induced self-defocusing and propagation modes changing effects caused by some finite absorption of the broadband laser at the short wavelength regime. These nonlinear and other known electro-optical properties of BPLC, in conjunction with their fabrication ease make these fiber arrays highly promising for imaging, electro-optical or all-optical modulation, switching and passive optical limiting applications.

© 2013 OSA

OCIS Codes
(160.3710) Materials : Liquid crystals
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5940) Nonlinear optics : Self-action effects
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: December 4, 2012
Revised Manuscript: January 6, 2013
Manuscript Accepted: January 9, 2013
Published: February 12, 2013

Iam Choon Khoo, Kuan Lung Hong, Shuo Zhao, Ding Ma, and Tsung-Hsien Lin, "Blue-phase liquid crystal cored optical fiber array with photonic bandgaps and nonlinear transmission properties," Opt. Express 21, 4319-4327 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1989).
  2. P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003). [CrossRef] [PubMed]
  3. A. Abeeluck, N. M. Litchinitser, C. Headley, and B. J. Eggleton, “Analysis of spectral characteristics of photonic bandgap waveguides,” Opt. Express10(23), 1320–1333 (2002). [CrossRef] [PubMed]
  4. H. S. Kitzerow, B. Liu, F. Xu, and P. P. Crooker, “Effect of chirality on liquid crystals in capillary tubes with parallel and perpendicular anchoring,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics54(1), 568–575 (1996). [CrossRef] [PubMed]
  5. I. C. Khoo and H. Li, “Nonlinear optical propagation and self-limiting effect in liquid-crystalline fibers,” Appl. Phys. B59(6), 573–580 (1994). [CrossRef]
  6. A. d’Alessandro, R. Asquini, M. Trotta, G. Gilardi, R. Beccherelli, and I. C. Khoo, “All-optical intensity modulation of near infrared light in a liquid crystal channel waveguide,” Appl. Phys. Lett.97(9), 093302 (2010). [CrossRef]
  7. G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett.94(6), 063903 (2005). [CrossRef] [PubMed]
  8. J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics5(4), 234–238 (2011). [CrossRef]
  9. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express11(20), 2589–2596 (2003). [CrossRef] [PubMed]
  10. F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett.85(12), 2181–2183 (2004). [CrossRef]
  11. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S.-T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express12(24), 5857–5871 (2004). [CrossRef] [PubMed]
  12. L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. S. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express13(19), 7483–7496 (2005). [CrossRef] [PubMed]
  13. V. K. S. Hsiao and C.-Y. Ko, “Light-controllable photoresponsive liquid-crystal photonic crystal fiber,” Opt. Express16(17), 12670–12676 (2008). [CrossRef] [PubMed]
  14. A. Lorenz, H.-S. Kitzerow, A. Schwuchow, J. Kobelke, and H. Bartelt, “Photonic crystal fiber with a dual-frequency addressable liquid crystal: behavior in the visible wavelength range,” Opt. Express16(23), 19375–19381 (2008). [CrossRef] [PubMed]
  15. J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused,” Opt. Lett.33(19), 2215–2217 (2008). [CrossRef] [PubMed]
  16. W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express17(22), 19356–19364 (2009). [CrossRef] [PubMed]
  17. C. H. Chen, C. H. Lee, and T. H. Lin, “Loss-reduced photonic liquid-crystal fiber by using photoalignment method,” Appl. Opt.49(26), 4846–4850 (2010). [CrossRef] [PubMed]
  18. L. Scolari, L. Wei, S. Gauza, S.-T. Wu, and A. Bjarklev, “Low loss liquid crystal photonic bandgap fiber in the near-infrared region,” Opt. Rev.18(1), 114–116 (2011). [CrossRef]
  19. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002). [CrossRef] [PubMed]
  20. H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature436(7053), 997–1000 (2005). [CrossRef] [PubMed]
  21. R. M. Hornreich, S. Shtrikman, and C. Sommers, “Photonic bands in simple and body-centered-cubic cholesteric blue phases,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics47(3), 2067–2072 (1993). [CrossRef] [PubMed]
  22. C. T. Wang, H. C. Jau, and T. H. Lin, “Bistable cholesteric-blue phase liquid crystal using thermal hysteresis,” Opt. Mater.34(1), 248–250 (2011). [CrossRef]
  23. C. W. Chen, H. C. Jau, C. T. Wang, C. H. Lee, I. C. Khoo, and T. H. Lin, “Random lasing in blue phase liquid crystals,” Opt. Express20(21), 23978–23984 (2012). [CrossRef] [PubMed]
  24. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: Novel dynamic photonic materials,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3244–3247 (2007). [CrossRef]
  25. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Phototunable reflection notches of cholesteric liquid crystals,” J. Appl. Phys.104(6), 063102 (2008). [CrossRef]
  26. H.-K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B104(30), 7023–7028 (2000). [CrossRef]
  27. Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. (Deerfield Beach Fla.)17(1), 96–98 (2005). [CrossRef]
  28. Z. Ge, L. Rao, S. Gauza, and S.-T. Wu, “Modeling of blue phase liquid crystal displays,” J. Display Technol.5(7), 250–256 (2009). [CrossRef]
  29. Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett.94(10), 101104 (2009). [CrossRef]
  30. I. C. Khoo and T. H. Lin, “Nonlinear optical grating diffraction in dye-doped blue-phase liquid crystals,” Opt. Lett.37(15), 3225–3227 (2012). [CrossRef] [PubMed]
  31. I. C. Khoo and R. Normandin, “The mechanism and dynamics of transient thermal grating diffraction in nematic liquid crystal films,” IEEE J. Quantum Electron.21(4), 329–335 (1985). [CrossRef]
  32. I. C. Khoo, Liquid Crystals, 2nd ed. (Wiley InterScience, 2007).
  33. I. C. Khoo, “Nonlinear organic liquid cored fiber array for all- optical switching and sensor protection against short pulsed lasers,” IEEE J. Sel. Top. Quantum Electron.14(3), 946–951 (2008) (and references therein). [CrossRef]
  34. H. J. Eichler, R. Macdonald, and B. Trosken, “Multi-photon excitation and relaxation of thermal gratings in the nematic liquid crystal 5CB,” Molecular Cryst. Liquid Cryst. Sci. Technol.231(1), 1–10 (1993). [CrossRef]
  35. I. C. Khoo and A. Diaz, “Multipe-time-scales dynamical studies of nonlinear transmission of pulsed lasers in a multi-photon absorbing organic material,” J. Opt. Soc. Am. B28(7), 1702–1710 (2011). [CrossRef]
  36. See for example,I. C. Khoo, J. Liou, and M. V. Stinger, “Microseconds-nanoseconds all-optical switching of visible-near infrared (0.5 μm-1.55 μm) lasers with dye-doped nematic liquid crystals,” Molecular Cryst. Liquid Cryst. Sci. Technol.527, 109–118 (2010); and references therein.
  37. I. C. Khoo, “Extreme nonlinear optics of nematic liquid crystals,” J. Opt. Soc. Am. B28(12), A45–A55 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited