OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4348–4354

Plasmonic holographic imaging with V-shaped nanoantenna array

Fei Zhou, Ye Liu, and Weiping Cai  »View Author Affiliations


Optics Express, Vol. 21, Issue 4, pp. 4348-4354 (2013)
http://dx.doi.org/10.1364/OE.21.004348


View Full Text Article

Enhanced HTML    Acrobat PDF (2944 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this article, a novel method of holographic imaging with Au nanoantenna array is presented. In order to obtain the plasmonic holographic plate for a preset letter “NANO”, the phase distribution of the hologram is firstly generated by the weighted Gerchberg-Saxton (GSW) algorithm, and then 16 kinds of V-shaped nanoantennas with different geometric parameters are designed to evenly cover the phase shift of 0 to 2π by finite-difference time-domain (FDTD) method. Through orienting these nanoantennas according to the phase distribution of the hologram, the plasmonic array hologram is obtained. Very good imaging quality is observed with our nanoantenna array hologram plate. This method can be used for holographic imaging of arbitrary shape, and may find potential applications in holographic memory, printing and holographic display.

© 2013 OSA

OCIS Codes
(090.2910) Holography : Holography, microwave
(240.6680) Optics at surfaces : Surface plasmons
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

History
Original Manuscript: December 19, 2012
Revised Manuscript: January 23, 2013
Manuscript Accepted: January 25, 2013
Published: February 12, 2013

Citation
Fei Zhou, Ye Liu, and Weiping Cai, "Plasmonic holographic imaging with V-shaped nanoantenna array," Opt. Express 21, 4348-4354 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-4-4348


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003). [CrossRef] [PubMed]
  2. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311, 189–193 (2006). [CrossRef] [PubMed]
  3. F. J. G. de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1290 (2007). [CrossRef]
  4. B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quant. Electron.34, 47–87 (2010). [CrossRef]
  5. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002). [CrossRef] [PubMed]
  6. P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nature Commun.3, 1278 (2012). [CrossRef]
  7. I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett.109, 203903 (2012). [CrossRef] [PubMed]
  8. N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011). [CrossRef] [PubMed]
  9. F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gahurro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012). [CrossRef] [PubMed]
  10. P. Y. Chen and A. Alu, “Subwavelength imaging using phase-conjugating nonlinear nanoantenna arrays,” Nano Lett.11, 5514–5518 (2011). [CrossRef] [PubMed]
  11. M. Ozaki, J. Kato, and S. Kawata, “Surface-plasmon holography with white-light illumination,” Science332, 218–220 (2011). [CrossRef] [PubMed]
  12. M. C. King, A. M. Noll, and D. H. Berry, “A new approach to computer-generated holography,” Appl. Opt.9, 471–475 (1970). [CrossRef] [PubMed]
  13. B. K. Jennison, J. P. Allebach, and D. W. Sweeney, “Iterative approaches to computer-generated holography,” Opt. Eng.28, 629–637 (1989). [CrossRef]
  14. N. Masuda, T. Ito, T. Tanaka, A. Shiraki, and T. Sugie, “Computer generated holography using a graphics processing unit,” Opt. Express14, 603–608 (2006). [CrossRef] [PubMed]
  15. Y. H. Chen, L. Huang, L. Gan, and Z. Y. Li, “Wavefront shaping of infrared light through a subwavelength hole,” Light Sci. Appl.1, e26 (2012). [CrossRef]
  16. R. W. Gerchber and W. O. Saxton, “A Practical algorithm for determination of phase from image and diffraction plane pictures,” Optik35, 237–246 (1972).
  17. L. C. Thomson and J. Courtial, “Holographic shaping of generalized self-reconstructing light beams,” Opt. Commun.281, 1217–1221 (2008). [CrossRef]
  18. N. Yoshikawa and T. Yatagai, “Phase optimization of a kinoform by simulated annealing,” Appl. Opt.33, 863–868 (1994). [CrossRef] [PubMed]
  19. R. D. Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express15, 1913–1922 (2007). [CrossRef] [PubMed]
  20. M. Born and E. Wolf, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge ; New York, 1999), 7th ed.
  21. A. Taflove and S. C. Hagness, Computational Electrodynamics : The Finite-Difference Time-Domain Method, Artech House antennas and propagation library (Artech House, Boston, 2005), 3rd ed.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited