OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4355–4360

Near-field electrospinning of dielectric-loaded surface plasmon polariton waveguides

Giulio Biagi, Tobias Holmgaard, and Esben Skovsen  »View Author Affiliations

Optics Express, Vol. 21, Issue 4, pp. 4355-4360 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2065 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dielectric-loaded surface plasmon polariton waveguides (DLSPPWs) are typically made using nanolithography fabrication methods. In this paper we demonstrate that near-field electrospinning of polymer nanofibers directly onto a gold coated substrate can be used as an alternative method for rapid prototype fabrication of DLSPPWs. Surface plasmon polaritons (SPPs) have been excited directly inside the electrospun fibers using a prism in the Kretschmann-Raether configuration. A scanning near-field optical microscope (SNOM) was used to characterize the propagation of the excited SPP inside the polymer fiber demonstrating the potential for using electrospun polymer fibers as SPP waveguides.

© 2013 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: December 21, 2012
Revised Manuscript: February 3, 2013
Manuscript Accepted: February 4, 2013
Published: February 12, 2013

Giulio Biagi, Tobias Holmgaard, and Esben Skovsen, "Near-field electrospinning of dielectric-loaded surface plasmon polariton waveguides," Opt. Express 21, 4355-4360 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. H. Reather, “Surface plasmons on smooth and rough surfaces and on gratings” (Springer-Verlag, 1988).
  3. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000). [CrossRef]
  4. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett.82(5), 668–670 (2003). [CrossRef]
  5. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol.23(1), 413–422 (2005). [CrossRef]
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006). [CrossRef] [PubMed]
  7. I. V. Novikov and A. A. Maradudin, “Channel Polaritons,” Phys. Rev. B66(3), 035403 (2002). [CrossRef]
  8. T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B78(16), 165431 (2008). [CrossRef]
  9. B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett.88(9), 094104 (2006). [CrossRef]
  10. C. Reinhardt, S. Passinger, B. N. Chichkov, C. Marquart, I. P. Radko, and S. I. Bozhevolnyi, “Laser-fabricated dielectric optical components for surface plasmon polaritons,” Opt. Lett.31(9), 1307–1309 (2006). [CrossRef] [PubMed]
  11. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded plasmonic waveguide-ring resonators,” Opt. Express17(4), 2968–2975 (2009). [CrossRef] [PubMed]
  12. T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths: Excitation and characterization,” Appl. Phys. Lett.92(1), 011124 (2008). [CrossRef]
  13. S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett.91(24), 243102 (2007). [CrossRef]
  14. D. Sun, C. Chang, S. Li, and L. Lin, “Near-field electrospinning,” Nano Lett.6(4), 839–842 (2006). [CrossRef] [PubMed]
  15. C. Chang, K. Limkrailassiri, and L. Lin, “Continous near-field electrospinning for large area deposition of orderly nanofiber patterns,” Appl. Phys. Lett.93(12), 123111 (2008). [CrossRef]
  16. T. Holmgaard and S. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B75(24), 245405 (2007). [CrossRef]
  17. N. Tomczak, S. Gu, M. Han, N. F. van Hulst, and G. Julius Vancso, “Single light emitters in electrospun polymer nanofibers: Effect of local confinement on radiative decay,” Eur. Polym. J.42(10), 2205–2210 (2006). [CrossRef]
  18. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long range propagation,” Nat. Photonics2(8), 496–500 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited