OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4382–4395

Detuning-dependent Mollow triplet of a coherently-driven single quantum dot

Ata Ulhaq, Stefanie Weiler, Chiranjeeb Roy, Sven Marcus Ulrich, Michael Jetter, Stephen Hughes, and Peter Michler  »View Author Affiliations

Optics Express, Vol. 21, Issue 4, pp. 4382-4395 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1222 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present both experimental and theoretical investigations of a laser-driven quantum dot (QD) in the dressed-state regime of resonance fluorescence. We explore the role of phonon scattering and pure dephasing on the detuning-dependence of the Mollow triplet and show that the triplet sidebands may spectrally broaden or narrow with increasing detuning. Based on a polaron master equation approach, which includes electron-phonon interaction nonperturbatively, we derive a fully analytical expression for the spectrum. With respect to detuning dependence, we identify a crossover between the regimes of spectral sideband narrowing or broadening. We also predict regimes of phonon-induced squeezing and anti-squeezing of the spectral resonances. A comparison of the theoretical predictions to detailed experimental studies on the laser detuning-dependence of Mollow triplet resonance emission from single In(Ga)As QDs reveals excellent agreement.

© 2013 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6470) Spectroscopy : Spectroscopy, semiconductors

ToC Category:
Quantum Optics

Original Manuscript: October 10, 2012
Revised Manuscript: January 11, 2013
Manuscript Accepted: January 11, 2013
Published: February 13, 2013

Ata Ulhaq, Stefanie Weiler, Chiranjeeb Roy, Sven Marcus Ulrich, Michael Jetter, Stephen Hughes, and Peter Michler, "Detuning-dependent Mollow triplet of a coherently-driven single quantum dot," Opt. Express 21, 4382-4395 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett.99, 187402, (2007). [CrossRef] [PubMed]
  2. E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe, M. Xiao, W. Ma, G. J. Salamo, and C. K. Shih, “Resonantly driven coherent oscillations in a solid-state quantum emitter,” Nat. Phys.5203–207 (2009). [CrossRef]
  3. A. Nick Vamivakas, Yong Zhao, Chao-Yang Lu, and Mete Atatüre, “Spin-resolved quantum-dot resonance fluorescence,” Nat. Physics5, 198–202 (2009). [CrossRef]
  4. A. Kiraz, M. Atatüre, and A Imamoğlu, “Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing,” Phys. Rev. A69, 032305 (2004). [CrossRef]
  5. S. Ates, S. M. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, “Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity,” Phys. Rev. Lett.103, 167402 (2009). [CrossRef] [PubMed]
  6. C. Matthiesen, A. N. Vamivakas, and M. Atatüre, “Subnatural linwidth single photons from a quantum dot,” Phys. Rev. Lett.108, 093602 (2012). [CrossRef] [PubMed]
  7. H. S. Nguyen, C. Voisin, P. Roussignol, C. Diedrichs, and G. Cassabois, “Ultra-coherent single photon source,” App. Phys. Lett.99, 261904 (2011). [CrossRef]
  8. A. Ulhaq, S. Weiler, S. M. Ulrich, R. Roßbach, M. Jetter, and P. Michler, “Cascaded single-photon emission from resonantly excited quantum dots,” Nat. Photonics6, 238 (2012). [CrossRef]
  9. C. Roy and S. Hughes, “Influence of electron-acoustic-phonon scattering on intensity power broadening in a coherently driven quantum-dot-cavity system,” Phys. Rev. X1, 021009 (2011). [CrossRef]
  10. C. Förstner, C. Weber, J. Danckwerts, and A. Knorr, “Phonon-assisted damping of Rabi oscillations in semiconductor quantum dots,” Phys. Rev. Lett.91, 127401 (2003). [CrossRef] [PubMed]
  11. P. Machnikowski and L. Jacak, “Resonant nature of phonon-induced damping of Rabi oscillations in quantum dots,” Phys. Rev. B69, 193302 (2004). [CrossRef]
  12. K. J. Ahn, J. Förstner, and A. Knorr, “Resonance fluorescence of semiconductor quantum dots: Signatures of the electron-phonon interaction,” Phys. Rev. B71, 153309 (2005). [CrossRef]
  13. A. Vagov, M. D. Croitoru, V. M. Axt, T. Kuhn, and F. M. Peeters, “Nonmonotonous field dependence of damping and reappearance of rabi oscillations in quantum dots,” Phys. Rev. Lett.98, 227403 (2007). [CrossRef] [PubMed]
  14. A. Nazir, “Photon statistics from a resonantly driven quantum dot,” Phys. Rev. B78, 153309, (2008). [CrossRef]
  15. C. Roy and S. Hughes, “Phonon-dressed Mollow triplet in the regime of cavity quantum electrodynamics: Excitation-induced dephasing and nonperturbative cavity feeding effects,” Phys. Rev. Lett.106, 247403 (2011). [CrossRef] [PubMed]
  16. C. Roy, H. Kim, E. Waks, and S. Hughes, “Anomalous phonon-mediated damping of a driven quantum dot embedded in a high-Q microcavity,” Photon Nanostruct: Fundam. Appl.10, 359 (2012). [CrossRef]
  17. A. J. Ramsay, A. V. Gopal, E. M. Gauger, A. Nazir, B. W. Lovett, A. M. Fox, and M. S. Skolnick, “Damping of exciton rabi rotations by acoustic phonons in optically excited InGaAs/GaAs quantum dots,” Phys. Rev. Lett.104, 017402 (2010). [CrossRef] [PubMed]
  18. S. M. Ulrich, S. Ates, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, “Dephasing of Mollow triplet sideband emission of a resonantly driven quantum dot in a microcavity,” Phys. Rev. Lett.106, 247402, (2011). [CrossRef] [PubMed]
  19. B. R. Mollow, “Power spectrum of light scattered by two-level systems,” Phys. Rev.188, 169–175 (1969). [CrossRef]
  20. I. Wilson-Rae and A. Imamoğlu, “Quantum dot cavity-QED in the presence of strong electron-phonon interactions,” Phys. Rev. B65, 235311 (2002). [CrossRef]
  21. D. P. S. McCutcheon and A. Nazir, “Quantum dot Rabi rotations beyond the weak exciton-phonon coupling regime,” New J. Phys.12, 113042 (2010). [CrossRef]
  22. G. D. Mahan, Many-Particle Physics (Plenum, New York, 1990). [CrossRef]
  23. L. Besombes, K. Kheng, L. Marsal, and H. Mariette, “Acoustic phonon broadening mechanism in single quantum dot emission,” Phys. Rev. B63, 155307 (2001). [CrossRef]
  24. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett.87, 157401 (2001). [CrossRef] [PubMed]
  25. E. A. Muljarov and R. Zimmermann, “Dephasing in quantum dots: quadratic coupling to acoustic phonons,” Phys. Rev. Lett.93, 237401 (2004). [CrossRef] [PubMed]
  26. M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots,” Phys. Rev. B65, 041308 (2002). [CrossRef]
  27. G. Ortner, D. R . Yakovlev, M. Bayer, S. Rudin, T. L. Reinecke, S. Fafard, Z. Wasilewski, and A. Forchel, “Temperature dependence of the zero-phonon linewidth in InAsGaAs quantum dots,” Phys. Rev. B70, 201301(R) (2004). [CrossRef]
  28. B. Krummheuer, V. M. Axt, and T. Kuhn, “Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots,” Phys. Rev. B65, 195313 (2002). [CrossRef]
  29. J. Förstner, C. Weber, J. Danckwerts, and A. Knorr, “Phonon-assisted damping of Rabi oscillations in semiconductor quantum dots,” Phys. Rev. Lett.91, 127401 (2003). [CrossRef] [PubMed]
  30. C. Roy and S. Hughes, “Polaron master equation theory of the quantum-dot Mollow triplet in a semiconductor cavity-QED system,” Phys Rev B85, 115309 (2012). [CrossRef]
  31. In order to derive the phonon scattering rates, we use parameters for InAs/GaAs QDs, which are ωb = 1 meV and αp/(2π)2 = 0.15 ps2, where ωb is the high frequency cutoff proportional to the inverse of the typical electronic localization length in the QD and αp is a material parameter (extracted from our experiments) that accounts for the difference between the deformation potential constants between electrons and holes.
  32. G. S. Agarwal and R. R. Puri, “Cooperative behavior of atoms irradiated by broadband squeezed light,” Phys. Rev. A41, 3782 (1990). [CrossRef] [PubMed]
  33. Anders Moelbjerg, Per Kaer, Michael Lorke, and Jesper Mørk, “Resonance fluorescence from semiconductor quantum dots: Beyond the Mollow triplet,” Phys. Rev. Lett.108, 017401 (2012). [CrossRef] [PubMed]
  34. S. Weiler, A. Ulhaq, S. M. Ulrich, D. Richter, M. Jetter, P. Michler, C. Roy, and S. Hughes, “Phonon-Assisted Incoherent Excitation of a Quantum Dot and its Emission Properties,” Phys. Rev. B86, 241304(R) (2012). [CrossRef]
  35. D. P. S. McCutcheon, N. S. Dattani, E. M. Gauger, B. W. Lovett, and A. Nazir, “A general approach to quantum dynamics using a variational master equation: Application to phonon-damped Rabi rotations in quantum dots,” Phys. Rev. B84, 081305(R) (2011).
  36. e.g., see M. Glässl, A. Vagov, S. Lüker, D. E. Reiter, M. D. Croitoru, P. Machnikowski, V. M. Axt, and T. Kuhn, “Long-time dynamics and stationary nonequilibrium of an optically driven strongly confined quantum dot coupled to phonons,” Phys. Rev. B84, 195311 (2011). [CrossRef]
  37. e.g., see H. J. Carmichael, Statistical methods in quantum optics 1: Master equations and Fokker-Planck equations (Springer, 2003).
  38. M. Bissiri, G. Baldassarri Höger von Högersthal, A. S. Bhatti, M. Capizzi, A. Frova, P. Figeri, and S. Franchi, “Optical evidence of polaron interaction in InAs/GaAs quantum dots,” Phys. Rev. B62, 4642 (2000). [CrossRef]
  39. S. Hughes, P. Yao, F. Milde, A. Knorr, D. Dalacu, M. Mnaymneh, V. Sazonova, P. J. Poole, G. C. Aers, J. Lapointe, R. Cheriton, and R. L. Williams, “Influence of electron-acoustic phonon scattering on off-resonant cavity feeding within a strongly coupled quantum-dot cavity system,” Phys. Rev. B83, 165313 (2011). [CrossRef]
  40. P. Dara, S. McCutcheon, and Ahsan Nazir, “Emission properties of a driven artificial atom: increased coherent scattering and off-resonant sideband narrowing,” arXiv:1208.4620v1
  41. T. F. Kuech, “Metal-organic vapor phase epitaxy of compound semiconductors,” Material Science Reports2, 1–50 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited