OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4551–4559

Plasphonics : local hybridization of plasmons and phonons

Renaud Marty, Adnen Mlayah, Arnaud Arbouet, Christian Girard, and Sudhiranjan Tripathy  »View Author Affiliations


Optics Express, Vol. 21, Issue 4, pp. 4551-4559 (2013)
http://dx.doi.org/10.1364/OE.21.004551


View Full Text Article

Acrobat PDF (757 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that the interaction between localized surface plasmons sustained by a metallic nano-antenna and delocalized phonons lying at the surface of an heteropolar semiconductor can generate a new class of hybrid electromagnetic modes. These plasphonic modes are investigated using an analytical model completed by accurate Green dyadic numerical simulations. When surface plasmon and surface phonon frequencies match, the optical resonances exhibit a large Rabi splitting typical of strongly interacting two-level systems. Based on numerical simulations of the electric near-field maps, we investigate the nature of the plaphonic excitations. In particular, we point out a strong local field enhancement boosted by the phononic surface. This effect is interpreted in terms of light harvesting by the plasmonic antenna from the phononic surface. We thus introduce the concept of active phononic surfaces that may be exploited for far-infared optoelectronic devices and sensors.

© 2013 OSA

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(300.0300) Spectroscopy : Spectroscopy

ToC Category:
Optics at Surfaces

History
Original Manuscript: November 23, 2012
Revised Manuscript: January 17, 2013
Manuscript Accepted: January 18, 2013
Published: February 14, 2013

Citation
Renaud Marty, Adnen Mlayah, Arnaud Arbouet, Christian Girard, and Sudhiranjan Tripathy, "Plasphonics : local hybridization of plasmons and phonons," Opt. Express 21, 4551-4559 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-4-4551


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (New YorkWiley-Interscience, 1983).
  2. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. PressNew York, 2006).
  3. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010). [CrossRef] [PubMed]
  4. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1, 641–648 (2007). [CrossRef]
  5. R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light-matter interaction at the nanometre scale,” Nature418, 159–162 (2002). [CrossRef] [PubMed]
  6. M. S. Anderson, “Surface enhanced infrared absorption by coupling phonon and plasmon resonance,” Appl. Phys. Lett.87, 144102 (2005). [CrossRef]
  7. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101, 157403 (2008). [CrossRef] [PubMed]
  8. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett.6, 827–832 (2006). [CrossRef] [PubMed]
  9. G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett.7, 1297–1303 (2007). [CrossRef] [PubMed]
  10. N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett.8, 3481–3487 (2008). [CrossRef] [PubMed]
  11. S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano4, 6369–6376 (2010). [CrossRef] [PubMed]
  12. A. Manjavacas, F. G. de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett.11, 2318–2323 (2011). [CrossRef] [PubMed]
  13. S. Grabowski, T. Kampen, H. Nienhaus, and W. Monch, “Vibrational properties of GaN(0001) surfaces,” Appl. Surf. Sci.123, 33–37 (1998). [CrossRef]
  14. N. Esser and W. Richter, Raman Scattering from Surface Phonons (Springer Berlin / Heidelberg, 96–168, 2000).
  15. A. Mooradian and G. B. Wright, “Observation of the interaction of plasmons with longitudinal optical phonons in GaAs,” Phys. Rev. Lett.16, 999–1001 (1966). [CrossRef]
  16. M. Abstreiter, G. Cardona, and A. Pinczuk, Light Scattering by Free Carrier Excitations in Semiconductors (Springer-Verlag, Berlin, 1984).
  17. A. Huber, N. Ocelic, T. Taubner, and R. Hillenbrand, “Nanoscale resolved infrared probing of crystal structure and of plasmon-phonon coupling,” Nano Lett.6, 774–778 (2006). [CrossRef] [PubMed]
  18. H. C. Kim and X. Cheng, “Infrared dipole antenna enhanced by surface phonon polaritons,” Opt. Lett.35, 3748–3750 (2010). [CrossRef] [PubMed]
  19. G. Yu, N. L. Rowell, and D. J. Lockwood, “Anisotropic infrared optical properties of GaN and sapphire,” J. Vac. Sci. Technol. A22, 1110–1114 (2004). [CrossRef]
  20. D. Lockwood, G. Yu, and N. L. Rowell, “Optical phonon frequencies and damping in AlAs, GaP, GaAs, InP, InAs and InSb studied by oblique incidence infrared spectroscopy,” Solid State Commun.136, 404–409 (2005). [CrossRef]
  21. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007). [CrossRef] [PubMed]
  22. H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual Ag nanorice,” ACS Nano4, 2649–2654 (2010). [CrossRef] [PubMed]
  23. B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett.11, 3482–3488 (2011). [CrossRef] [PubMed]
  24. C. Girard, “Near field in nanostructures,” Rep. Prog. Phys.681883–1933 (2005) [CrossRef]
  25. O. Keller, M. Xiao, and S. Bozhevolnyi, “Configurational resonances in optical near-field microscopy: a rigorous point-dipole approach,” Surf. Sci.280, 217–230 (1993). [CrossRef]
  26. J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71, 035424 (2005). [CrossRef]
  27. L. Novotny, “Strong coupling, energy splitting, and level crossings: a classical perspective,” Am. J. Phys.78, 1199–1202 (2010). [CrossRef]
  28. O. J. F. Martin, C. Girard, and A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett.74, 526 (1995). [CrossRef] [PubMed]
  29. D. Barchiesi, C. Girard, O. J. F. Martin, D. Van Labeke, and D. Courjon, “Computing the optical near-field distributions around complex subwavelength surface structures: a comparative study of different methods,” Phys. Rev. E544285–4292 (1996). [CrossRef]
  30. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. W. Bell, J. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22, 1099–1119 (1983). [CrossRef] [PubMed]
  31. S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett.10, 2511–2518 (2010). [CrossRef] [PubMed]
  32. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett.89, 093120 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited