OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4578–4590

Shaping single emitter emission with metallic hole arrays: strong focusing of dipolar radiation

Robert J. Moerland, Lur Eguiluz, and Matti Kaivola  »View Author Affiliations


Optics Express, Vol. 21, Issue 4, pp. 4578-4590 (2013)
http://dx.doi.org/10.1364/OE.21.004578


View Full Text Article

Enhanced HTML    Acrobat PDF (3335 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nanoscale plasmonic structures allow for control of the emission of single emitters, such as fluorescent molecules and quantum dots, enabling phenomena such as lifetime reduction, emission redirection and color sorting of photons. We present single emitter emission tailored with arrays of holes of heterogeneous size, perforated in a gold film. With spatial control of the local amplitude and phase of the electromagnetic field radiated by the emitter, a desired near- or far-field distribution of the electromagnetic waves can be obtained. This control is established by varying the aspect ratio of the individual holes and the periodicity of the array surrounding the emitter. As an example showing the versatility of the technique, we present the strong focusing of the radiation of a highly divergent dipole source, for both p- and s-polarized waves.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2110) Physical optics : Electromagnetic optics
(260.2510) Physical optics : Fluorescence
(260.3910) Physical optics : Metal optics

ToC Category:
Optics at Surfaces

History
Original Manuscript: December 11, 2012
Revised Manuscript: January 25, 2013
Manuscript Accepted: February 5, 2013
Published: February 14, 2013

Citation
Robert J. Moerland, Lur Eguiluz, and Matti Kaivola, "Shaping single emitter emission with metallic hole arrays: strong focusing of dipolar radiation," Opt. Express 21, 4578-4590 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-4-4578


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science262, 1422–1425 (1993). [CrossRef] [PubMed]
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58, 2059–2062 (1987). [CrossRef] [PubMed]
  3. H. Mertens, J. Biteen, H. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett.6, 2622–2625 (2006). [CrossRef] [PubMed]
  4. O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. G. Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7, 2871–2875 (2007). [CrossRef] [PubMed]
  5. R. J. Moerland, T. H. Taminiau, L. Novotny, N. F. van Hulst, and L. Kuipers, “Reversible polarization control of single photon emission,” Nano Lett.8, 606–610 (2008). [CrossRef] [PubMed]
  6. T. Taminiau, R. Moerland, F. Segerink, L. Kuipers, and N. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7, 28–33 (2007). [CrossRef] [PubMed]
  7. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010). [CrossRef] [PubMed]
  8. X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol.22, 969–976 (2004). [CrossRef] [PubMed]
  9. A. Friedrich, J. D. Hoheisel, N. Marme, and J. P. Knemeyer, “DNA-probes for the highly sensitive identification of single nucleotide polymorphism using single-molecule spectroscopy,” FEBS Lett.581, 1644–1648 (2007). [CrossRef] [PubMed]
  10. R. M. Bakker, V. P. Drachev, Z. T. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys.10, 125022 (2008). [CrossRef]
  11. H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett.85, 5312–5315 (2000). [CrossRef]
  12. H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett.11, 2400–2406 (2011). [CrossRef] [PubMed]
  13. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97, 017402 (2006). [CrossRef] [PubMed]
  14. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006). [CrossRef] [PubMed]
  15. M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett.100, 203002 (2008). [CrossRef] [PubMed]
  16. R. J. Moerland, H. T. Rekola, G. Sharma, A.-P. Eskelinen, A. I. Väkeväinen, and P. Törmä, “Surface plasmon polariton-controlled tunable quantum-dot emission,” Appl. Phys. Lett.100, 221111 (2012). [CrossRef]
  17. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998). [CrossRef]
  18. Y. D. Liu and S. Blair, “Fluorescence enhancement from an array of subwavelength metal apertures,” Optics Lett.28, 507–509 (2003). [CrossRef]
  19. A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, “Enhanced fluorescence from arrays of nanoholes in a gold film,” J. Am. Chem. Soc.127, 14936–14941 (2005). [CrossRef] [PubMed]
  20. J. Y. Zhang, Y. H. Ye, X. Y. Wang, P. Rochon, and M. Xiao, “Coupling between semiconductor quantum dots and two-dimensional surface plasmons,” Phys. Rev. B72, 201306 (2005). [CrossRef]
  21. A. G. Brolo, S. C. Kwok, M. D. Cooper, M. G. Moffitt, C. W. Wang, R. Gordon, J. Riordon, and K. L. Kavanagh, “Surface plasmon-quantum dot coupling from arrays of nanoholes,” J. Phys. Chem. B110, 8307–8313 (2006). [CrossRef] [PubMed]
  22. F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Modern Phys.82, 729–787 (2010). [CrossRef]
  23. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92, 037401 (2004). [CrossRef] [PubMed]
  24. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92, 183901 (2004). [CrossRef]
  25. K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B72, 045421 (2005). [CrossRef]
  26. J. C. Prangsma, D. van Oosten, R. J. Moerland, and L. Kuipers, “Increase of group delay and nonlinear effects with hole shape in subwavelength hole arrays,” New J. Phys.12, 013005 (2010). [CrossRef]
  27. F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett.83, 4500–4502 (2003). [CrossRef]
  28. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett.9, 235–238 (2008). [CrossRef] [PubMed]
  29. A. Taflove and S. C. Hagness, Computational Electrodynamics: the finite-difference time-domain method, (Artech House, Norwood, MA, 2000), 2nd ed.
  30. R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett.75, 4772–4775 (1995). [CrossRef] [PubMed]
  31. L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett.69, 3806–3808 (1996). [CrossRef]
  32. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Commun.181, 687–702 (2010). [CrossRef]
  33. T. P. Runarsson and X. Yao, “Search biases in constrained evolutionary optimization,” IEEE T. Syst. Man Cyb.35, 233–243 (2005). [CrossRef]
  34. S. G. Johnson, “The nlopt nonlinear-optimization package,” http://ab-initio.mit.edu/nlopt .
  35. A. H. G. Rinnooy Kan and G. T. Timmer, “Stochastic global optimization methods part I: Clustering methods,” Math. Programming39, 27–56 (1987). [CrossRef]
  36. A. H. G. Rinnooy Kan and G. T. Timmer, “Stochastic global optimization methods part II: Multi level methods,” Math. Programming39, 57–78 (1987). [CrossRef]
  37. M. J. D. Powell, “The BOBYQA algorithm for bound constrained optimization without derivatives,” Technical Report NA2009/06, Department of Applied Mathematics and Theoretical Physics, Cambridge England (2009). http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf .
  38. W. Lukosz, “Light-emission by magnetic and electric dipoles close to a plane dielectric interface. III. radiation-patterns of dipoles with arbitrary orientation,” J. Opt. Soc. Am.69, 1495–1503 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited