OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4612–4622

Femtosecond laser filament array generated with step phase plate in air

Hui Gao, Wei Chu, Guoliang Yu, Bin Zeng, Jiayu Zhao, Zhi Wang, Weiwei Liu, Ya Cheng, and Zhizhan Xu  »View Author Affiliations

Optics Express, Vol. 21, Issue 4, pp. 4612-4622 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1445 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Femtosecond laser filament arrays are generated in air by using three kinds of step phase plates with π phase lag, namely, the semicircular phase plate (SCPP), the quarter-circle phase plate (QCPP) and eight-octant phase plate (EOPP). Experimental results and simulations show that filament arrays consisting of two, four and eight filaments, respectively, are produced by three phase plates. The transverse patterns of the filament arrays are determined by the geometrical shapes of the phase plates. At the same time, the separation distances are found to vary with the focal lengths of the used lenses. We further propose that by using an axicon, filament array in the form of ring shape could be realized while the lengths of the filaments could be significantly elongated at the same time. Our study has suggested a realistic method to generate filament array by the step phase plate with π phase lag.

© 2013 OSA

OCIS Codes
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(260.5950) Physical optics : Self-focusing

ToC Category:
Nonlinear Optics

Original Manuscript: December 12, 2012
Revised Manuscript: February 4, 2013
Manuscript Accepted: February 6, 2013
Published: February 14, 2013

Hui Gao, Wei Chu, Guoliang Yu, Bin Zeng, Jiayu Zhao, Zhi Wang, Weiwei Liu, Ya Cheng, and Zhizhan Xu, "Femtosecond laser filament array generated with step phase plate in air," Opt. Express 21, 4612-4622 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys.83(9), 863–905 (2005). [CrossRef]
  2. S. L. Chin, F. Théberge, and W. Liu, “Filamentation nonlinear optics,” Appl. Phys. B86(3), 477–483 (2007). [CrossRef]
  3. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441(2-4), 47–189 (2007). [CrossRef]
  4. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys.70(10), 1633–1713 (2007). [CrossRef]
  5. J. Kasparian and J.-P. Wolf, “Physics and applications of atmospheric nonlinear optics and filamentation,” Opt. Express16(1), 466–493 (2008). [CrossRef] [PubMed]
  6. P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J. P. Wolf, “Higher-order Kerr terms allow ionization-free filamentation in gases,” Phys. Rev. Lett.104(10), 103903 (2010). [CrossRef] [PubMed]
  7. P. Béjot, E. Hertz, J. Kasparian, B. Lavorel, J. P. Wolf, and O. Faucher, “Transition from plasma-driven to Kerr-driven laser filamentation,” Phys. Rev. Lett.106(24), 243902 (2011). [CrossRef] [PubMed]
  8. V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in non-linear liquids,” JETP Lett.3, 307–310 (1966).
  9. G. Paunescu, G. Spindler, W. Riede, H. Schröder, and A. Giesen, “Multifilamentation of femtosecond laser pulses induced by small-scale air turbulence,” Appl. Phys. B96(1), 175–183 (2009). [CrossRef]
  10. G. Spindler and G. Paunescu, “Multifilamentation of femtosecond laser pulses propagating in turbulent air near the ground,” Appl. Phys. B96(1), 185–191 (2009). [CrossRef]
  11. S. L. Chin, A. Talebpour, J. Yang, S. Petit, V. P. Kandidov, O. G. Kosareva, and M. P. Tamarov, “Filamentation of femtosecond laser pulses in turbulent air,” Appl. Phys. B74(1), 67–76 (2002). [CrossRef]
  12. T. T. Xi, X. Lu, and J. Zhang, “Interaction of light filaments generated by femtosecond laser pulses in air,” Phys. Rev. Lett.96(2), 025003 (2006). [CrossRef] [PubMed]
  13. Y.-Y. Ma, X. Lu, T.-T. Xi, Q.-H. Gong, and J. Zhang, “Filamentation of interacting femtosecond laser pulses in air,” Appl. Phys. B93(2-3), 463–468 (2008). [CrossRef]
  14. B. Shim, S. E. Schrauth, C. J. Hensley, L. T. Vuong, P. Hui, A. A. Ishaaya, and A. L. Gaeta, “Controlled interactions of femtosecond light filaments in air,” Phys. Rev. A81(6), 061803 (2010). [CrossRef]
  15. S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett.86(24), 5470–5473 (2001). [CrossRef] [PubMed]
  16. H. Cai, J. Wu, P. F. Lu, X. S. Bai, L. E. Ding, and H. P. Zeng, “Attraction and repulsion of parallel femtosecond filaments in air,” Phys. Rev. A80(5), 051802 (2009). [CrossRef]
  17. M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett.83(15), 2938–2941 (1999). [CrossRef]
  18. Z.-Q. Hao, J. Zhang, T. T. Xi, X. H. Yuan, Z. Y. Zheng, X. Lu, M. Y. Yu, Y. T. Li, Z. H. Wang, W. Zhao, and Z. Y. Wei, “Optimization of multiple filamentation of femtosecond laser pulses in air using a pinhole,” Opt. Express15(24), 16102–16109 (2007). [CrossRef] [PubMed]
  19. C. P. Hauri, J. Gautier, A. Trisorio, E. Papalazarou, and P. Zeitoun, “Two-dimensional organization of a large number of stationary optical filaments by adaptive wave front control,” Appl. Phys. B90(3-4), 391–394 (2008). [CrossRef]
  20. T. Pfeifer, L. Gallmann, M. J. Abel, D. M. Neumark, and S. R. Leone, “Circular phase mask for control and stabilization of single optical filaments,” Opt. Lett.31(15), 2326–2328 (2006). [CrossRef] [PubMed]
  21. P. Rohwetter, M. Queißer, K. Stelmaszczyk, M. Fechner, and L. Wöste, “Laser multiple filamentation control in air using a smooth phase mask,” Phys. Rev. A77(1), 013812 (2008). [CrossRef]
  22. Y. X. Fu, H. Xiong, H. Xu, J. P. Yao, B. Zeng, W. Chu, Y. Cheng, Z. Z. Xu, W. W. Liu, and S. L. Chin, “Generation of extended filaments of femtosecond pulses in air by use of a single-step phase plate,” Opt. Lett.34(23), 3752–3754 (2009). [CrossRef] [PubMed]
  23. B. Zhou, S. Akturk, B. Prade, Y. B. André, A. Houard, Y. Liu, M. Franco, C. D’Amico, E. Salmon, Z. Q. Hao, N. Lascoux, and A. Mysyrowicz, “Revival of femtosecond laser plasma filaments in air by a nanosecond laser,” Opt. Express17(14), 11450–11456 (2009). [CrossRef] [PubMed]
  24. S. Akturk, B. Zhou, M. Franco, A. Couairon, and A. Mysyrowicz, “Generation of long plasma channels in air by focusing ultrashort laser pulses with an axicon,” Opt. Commun.282(1), 129–134 (2009). [CrossRef]
  25. P. Polynkin, M. Kolesik, A. Roberts, D. Faccio, P. Di Trapani, and J. Moloney, “Generation of extended plasma channels in air using femtosecond Bessel beams,” Opt. Express16(20), 15733–15740 (2008). [CrossRef] [PubMed]
  26. X. D. Sun, H. Gao, B. Zeng, S. Q. Xu, W. W. Liu, Y. Cheng, Z. Z. Xu, and G. G. Mu, “Multiple filamentation generated by focusing femtosecond laser with axicon,” Opt. Lett.37(5), 857–859 (2012). [CrossRef] [PubMed]
  27. H. Gao, X. Sun, B. Zeng, S. Xu, W. Chu, W. Liu, Y. Cheng, Z. Xu, and G. Mu, “Cylindrical symmetry breaking leads to multiple filamentation generation when focusing femtosecond lasers with axicons in methanol,” J. Opt.14(6), 065203 (2012). [CrossRef]
  28. G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett.93(3), 035003 (2004). [CrossRef] [PubMed]
  29. L. Guyon, K. M. Hajek, F. Courvoisier, V. Boutou, R. Nuter, A. Vincotte, S. Champeaux, L. Bergé, and J.-P. Wolf, “Control of lasing filament arrays in nonlinear liquid media,” Appl. Phys. B90(3-4), 383–390 (2008). [CrossRef]
  30. J. Liu, H. Schroeder, S. L. Chin, R. Li, and Z. Xu, “Ultrafast control of multiple filamentation by ultrafast laser pulses,” Appl. Phys. Lett.87(16), 161105 (2005). [CrossRef]
  31. H. Schroeder, J. Liu, and S. L. Chin, “From random to controlled small-scale filamentation in water,” Opt. Express12(20), 4768–4774 (2004). [CrossRef] [PubMed]
  32. G. Fibich, S. Eisenmann, B. Ilan, and A. Zigler, “Control of multiple filamentation in air,” Opt. Lett.29(15), 1772–1774 (2004). [CrossRef] [PubMed]
  33. Y. Fu, H. Gao, W. Chu, J. Ni, H. Xiong, H. Xu, J. Yao, B. Zeng, W. Liu, Y. Cheng, Z. Xu, and S. L. Chin, “Control of filament branching in air by astigmatically focused femtosecond laser pulses,” Appl. Phys. B103(2), 435–439 (2011). [CrossRef]
  34. Q. Luo, S. A. Hosseini, W. Liu, J.-F. Gravel, O. G. Kosareva, N. A. Panov, N. Aközbek, V. P. Kandidov, G. Roy, and S. L. Chin, “Effect of beam diameter on the propagation of intense femtosecond laser pulses,” Appl. Phys. B80(1), 35–38 (2004). [CrossRef]
  35. V. P. Kandidov, N. Aközbek, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, and S. L. Chin, “Towards a control of multiple filamentation by spatial regularization of a high-power femtosecond laser pulse,” Appl. Phys. B80(2), 267–275 (2005). [CrossRef]
  36. O. G. Kosareva, N. A. Panov, N. Akozbek, V. P. Kandidov, Q. Luo, S. A. Hosseini, W. Liu, J.-F. Gravel, G. Roy, and S. L. Chin, “Controlling a bunch of multiple filaments by means of a beam diameter,” Appl. Phys. B82(1), 111–122 (2006). [CrossRef]
  37. D. Majus, V. Jukna, G. Tamošauskas, G. Valiulis, and A. Dubietis, “Three-dimensional mapping of multiple filament arrays,” Phys. Rev. A81(4), 043811 (2010). [CrossRef]
  38. A. Dubietis, G. Tamosauskas, G. Fibich, and B. Ilan, “Multiple filamentation induced by input-beam ellipticity,” Opt. Lett.29(10), 1126–1128 (2004). [CrossRef] [PubMed]
  39. T. D. Grow and A. L. Gaeta, “Dependence of multiple filamentation on beam ellipticity,” Opt. Express13(12), 4594–4599 (2005). [CrossRef] [PubMed]
  40. D. Majus, V. Jukna, G. Valiulis, and A. Dubietis, “Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams,” Phys. Rev. A79(3), 033843 (2009). [CrossRef]
  41. M. Châteauneuf, S. Payeur, J. Dubois, and J.-C. Kieffer, “Microwave guiding in air by a cylindrical filament array waveguide,” Appl. Phys. Lett.92(9), 091104 (2008). [CrossRef]
  42. M. N. Shneider, A. M. Zheltikov, and R. B. Miles, “Long-lived laser-induced microwave plasma guides in the atmosphere: self-consistent plasma-dynamic analysis and numerical simulations,” J. Appl. Phys.108(3), 033113 (2010). [CrossRef]
  43. X. Yang, J. Wu, Y. Peng, Y. Q. Tong, P. F. Lu, L. E. Ding, Z. Z. Xu, and H. P. Zeng, “Plasma waveguide array induced by filament interaction,” Opt. Lett.34(24), 3806–3808 (2009). [CrossRef] [PubMed]
  44. J. Liu, W. X. Li, H. F. Pan, and H. P. Zeng, “Two-dimensional plasma grating by non-collinear femtosecond filament interaction in air,” Appl. Phys. Lett.99(15), 151105 (2011). [CrossRef]
  45. S. P. Kuo and J. Faith, “Interaction of an electromagnetic wave with a rapidly created spatially periodic plasma,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics56(2), 2143–2150 (1997). [CrossRef]
  46. O. Sakai, T. Sakaguchi, and K. Tachibana, “Verification of a plasma photonic crystal for microwaves of millimeter wavelength range using two-dimensional array of columnar microplasmas,” Appl. Phys. Lett.87(24), 241505 (2005). [CrossRef]
  47. M. Alshershby, Z. Q. Hao, and J. Q. Lin, “Guiding microwave radiation using laser-induced filaments: the hollow conducting waveguide concept,” J. Phys. D Appl. Phys.45(26), 265401 (2012). [CrossRef]
  48. E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, “Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses,” J. Opt. Soc. Am. B14(3), 650–660 (1997). [CrossRef]
  49. A. Talebpour, J. Yang, and S. L. Chin, “Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti: sapphire laser pulse,” Opt. Commun.163(1-3), 29–32 (1999). [CrossRef]
  50. J. Kasparian, R. Sauerbrey, and S. L. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B71(6), 877–879 (2000). [CrossRef]
  51. M. Kolesik, D. Mirell, J.-C. Diels, and J. V. Moloney, “On the higher-order Kerr effect in femtosecond filaments,” Opt. Lett.35(21), 3685–3687 (2010). [CrossRef] [PubMed]
  52. P. Polynkin, M. Kolesik, E. M. Wright, and J. V. Moloney, “Experimental tests of the new paradigm for laser filamentation in gases,” Phys. Rev. Lett.106(15), 153902 (2011). [CrossRef] [PubMed]
  53. M. Petrarca, Y. Petit, S. Henin, R. Delagrange, P. Béjot, and J. Kasparian, “Higher-order Kerr improve quantitative modeling of laser filamentation,” Opt. Lett.37(20), 4347–4349 (2012). [CrossRef] [PubMed]
  54. Z. X. Wang, C. J. Zhang, J. S. Liu, R. X. Li, and Z. Z. Xu, “Femtosecond filamentation in argon and higher-order nonlinearities,” Opt. Lett.36(12), 2336–2338 (2011). [CrossRef] [PubMed]
  55. O. Kosareva, J.-F. Daigle, N. Panov, T. Wang, S. Hosseini, S. Yuan, G. Roy, V. Makarov, and S. Leang Chin, “Arrest of self-focusing collapse in femtosecond air filaments: higher order Kerr or plasma defocusing?” Opt. Lett.36(7), 1035–1037 (2011). [CrossRef] [PubMed]
  56. P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science324(5924), 229–232 (2009). [CrossRef] [PubMed]
  57. D. G. Papazoglou, S. Suntsov, D. Abdollahpour, and S. Tzortzakis, “Tunable intense Airy beams and tailored femtosecond laser filaments,” Phys. Rev. A81(6), 061807 (2010). [CrossRef]
  58. A. Pasquazi, S. Stivala, G. Assanto, J. Gonzalo, J. Solis, and C. N. Afonso, “Near-infrared spatial solitons in heavy metal oxide glasses,” Opt. Lett.32(15), 2103–2105 (2007). [CrossRef] [PubMed]
  59. A. Pasquazi, S. Stivala, G. Assanto, J. Gonzalo, and J. Solis, “Transverse nonlinear optics in heavy-metal-oxide glass,” Phys. Rev. A77(4), 043808 (2008). [CrossRef]
  60. E. D’Asaro, S. Heidari-Bateni, A. Pasquazi, G. Assanto, J. Gonzalo, J. Solis, and C. N. Afonso, “Interaction of self-trapped beams in high index glass,” Opt. Express17(19), 17150–17155 (2009). [CrossRef] [PubMed]
  61. O. G. Kosareva, A. V. Grigor’evskii, and V. P. Kandidov, “Formation of extended plasma channels in a condensed medium upon axicon focusing of a femtosecond laser pulse,” Quantum Electron.35(11), 1013–1014 (2005). [CrossRef]
  62. J. H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am.44(8), 592 (1954). [CrossRef]
  63. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett.58(15), 1499–1501 (1987). [CrossRef] [PubMed]
  64. P. Polesana, M. Franco, A. Couairon, D. Faccio, and P. Di Trapani, “Filamentation in Kerr media from pulsed Bessel beams,” Phys. Rev. A77(4), 043814 (2008). [CrossRef]
  65. Z. X. Wu, H. B. Jiang, L. Luo, H. C. Guo, H. Yang, and Q. H. Gong, “Multiple foci and a long filament observed with focused femtosecond laser pulse propagation in fused silica,” Opt. Lett.27(6), 448–450 (2002). [CrossRef] [PubMed]
  66. W. Liu, S. L. Chin, O. Kosareva, I. S. Golubtsov, and V. P. Kandidov, “Multiple refocusing of a femtosecond laser in a dispersive liquid (methanol),” Opt. Commun.225(1-3), 193–209 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited