OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4653–4664

Thermo-optomechanical oscillator for sensing applications

Yang Deng, Fenfei Liu, Zayd C. Leseman, and Mani Hossein-Zadeh  »View Author Affiliations

Optics Express, Vol. 21, Issue 4, pp. 4653-4664 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (5583 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate and characterize a thermo-optomechanical oscillator based on a PMMA-coated silica microtoroid and employ it as a sensor. The observed thermo-optomechanical oscillation has a unique waveform that consists of fast and slow oscillation periods. A model based on thermal and optical dynamics of the cavity is used to describe the bi-frequency oscillation and experiments are conducted to validate the theoretical model in order to explore the origin of the two oscillatory phenomena. As opposed to previously shown hybrid toroidal microcavities, the excessive PMMA coating boosts the thermo-mechanical (expansion) effect that results in bi-frequency oscillation when coupled with the thermo-optical effect. The influences of the input power, quality factor, and wavelength detuning on oscillation frequencies are studied experimentally and verified theoretically. Finally the application of this oscillator as a sensor is explored by demonstrating the sensitivity of oscillation frequency to humidity changes.

© 2013 OSA

OCIS Codes
(190.4870) Nonlinear optics : Photothermal effects
(230.3990) Optical devices : Micro-optical devices
(230.4910) Optical devices : Oscillators
(230.5750) Optical devices : Resonators
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:

Original Manuscript: January 2, 2013
Revised Manuscript: February 1, 2013
Manuscript Accepted: February 3, 2013
Published: February 15, 2013

Yang Deng, Fenfei Liu, Zayd C. Leseman, and Mani Hossein-Zadeh, "Thermo-optomechanical oscillator for sensing applications," Opt. Express 21, 4653-4664 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A137(7–8), 393–397 (1989). [CrossRef]
  2. M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optical coupling to high-Q whispering-gallery-modes,” J. Opt. Soc. Am. B16(1), 147 (1999). [CrossRef]
  3. K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003). [CrossRef] [PubMed]
  4. L. Yang, D. K. Armani, and K. J. Vahala, “Fiber-coupled erbium microlasers on a chip,” Appl. Phys. Lett.83(5), 825–826 (2003). [CrossRef]
  5. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh-Q Toroid Microcavity,” Phys. Rev. Lett.93(8), 083904 (2004). [CrossRef] [PubMed]
  6. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods5(7), 591–596 (2008). [CrossRef] [PubMed]
  7. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A71(1), 013817 (2005). [CrossRef]
  8. V. S. Ilchenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys.2, 1004–1009 (1992).
  9. T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express12(20), 4742–4750 (2004). [CrossRef] [PubMed]
  10. Y. S. Park and H. Wang, “Regenerative pulsation in silica microspheres,” Opt. Lett.32(21), 3104–3106 (2007). [CrossRef] [PubMed]
  11. W. H. Pernice, M. Li, and H. X. Tang, “Time-domain measurement of optical transport in silicon micro-ring resonators,” Opt. Express18(17), 18438–18452 (2010). [CrossRef] [PubMed]
  12. T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express14(2), 817–831 (2006). [CrossRef] [PubMed]
  13. C. Baker, S. Stapfner, D. Parrain, S. Ducci, G. Leo, E. M. Weig, and I. Favero, “Optical instability and self-pulsing in silicon nitride whispering gallery resonators,” Opt. Express20(27), 29076–29089 (2012). [CrossRef] [PubMed]
  14. L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett.93(20), 201102 (2008). [CrossRef]
  15. C. H. Dong, L. He, Y. F. Xiao, V. Goddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q PDMS optical microspheres with applications towards thermal sensing,” Appl. Phys. Lett.94(23), 231119 (2009). [CrossRef]
  16. H. S. Choi, X. Zhang, and A. M. Armani, “Hybrid silica-polymer ultra-high-Q microresonators,” Opt. Lett.35(4), 459–461 (2010). [CrossRef] [PubMed]
  17. H.-S. Choi and A. M. Armani, “Thermal non-linear effects in hybrid optical microresonators,” Appl. Phys. Lett.97(22), 223306 (2010). [CrossRef]
  18. L. He, Y.-F. Xiao, J. Zhu, S. K. Ozdemir, and L. Yang, “Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators,” Opt. Express17(12), 9571–9581 (2009). [CrossRef] [PubMed]
  19. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003). [CrossRef] [PubMed]
  20. I. S. Grudinin and K. J. Vahala, “Thermal instability of a compound resonator,” Opt. Express17(16), 14088–14097 (2009). [CrossRef] [PubMed]
  21. N. A. Yebo, P. Lommens, Z. Hens, and R. Baets, “An integrated optic ethanol vapor sensor based on a silicon-on-insulator microring resonator coated with a porous ZnO film,” Opt. Express18(11), 11859–11866 (2010). [CrossRef] [PubMed]
  22. H. Wang, L. Yuan, C. W. Kim, Q. Han, T. Wei, X. Lan, and H. Xiao, “Optical microresonator based on hollow sphere with porous wall for chemical sensing,” Opt. Lett.37(1), 94–96 (2012). [CrossRef] [PubMed]
  23. H. Rokhsari, S. M. Spillane, and K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett.85(15), 3029–3031 (2004). [CrossRef]
  24. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, “High-Q measurements of fused-silica microspheres in the near infrared,” Opt. Lett.23(4), 247–249 (1998). [CrossRef] [PubMed]
  25. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited