OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4671–4676

Visible and near-infrared planar waveguide structure of polycrystalline zinc sulfide from C ions implantation

Tao Liu, Peng Liu, Lian Zhang, Yu-Fan Zhou, Xiao-Fei Yu, Jin-Hua Zhao, and Xue-Lin Wang  »View Author Affiliations

Optics Express, Vol. 21, Issue 4, pp. 4671-4676 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1360 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the fabrication of a planar waveguide in polycrystalline zinc sulfide by 6.0 MeV C ions implantation with a fluence of 5 × 1014 ion/cm2 at room temperature. The near-field light intensity profiles in the visible and near-infrared bands are measured by the end-face coupling method with different laser sources. Investigation of the Raman spectra demonstrates that the microstructure of the polycrystalline zinc sulfide has no significant change after C ion implantation. The absorption spectra show that the implantation processes have no influence on the visible and infrared bands.

© 2013 OSA

OCIS Codes
(160.4670) Materials : Optical materials
(230.7390) Optical devices : Waveguides, planar
(260.3060) Physical optics : Infrared

ToC Category:
Integrated Optics

Original Manuscript: January 4, 2013
Revised Manuscript: January 31, 2013
Manuscript Accepted: February 8, 2013
Published: February 15, 2013

Tao Liu, Peng Liu, Lian Zhang, Yu-Fan Zhou, Xiao-Fei Yu, Jin-Hua Zhao, and Xue-Lin Wang, "Visible and near-infrared planar waveguide structure of polycrystalline zinc sulfide from C ions implantation," Opt. Express 21, 4671-4676 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. B. Willingham and J. Pappis, “Polycrystalline zine sulphide and zinc selenide articles having improved optical quality,” U. S. Patent: 4944900 (1990).
  2. A. Goudarzi, G. M. Aval, R. Sahraei, and H. Ahmadpoor, “Ammonia-free chemical bath deposition of nanocrystalline ZnS thin film buffer layer for solar cells,” Thin Solid Films516(15), 4953–4957 (2008). [CrossRef]
  3. F. Göde, C. Gümüş, and M. Zor, “Investigations on the physical properties of the polycrystalline ZnS thin films deposited by the chemical bath deposition method,” J. Cryst. Growth299(1), 136–141 (2007). [CrossRef]
  4. Z. Y. Fang, Y. C. Chai, Y. L. Hao, Y. Y. Yang, Y. P. Dong, Z. W. Yan, H. C. Tian, H. T. Xiao, and H. M. Wang, “CVD growth of bulk polycrystalline ZnS and its optical properties,” J. Cryst. Growth237–239, 1707–1710 (2002).
  5. J. A. Savage, “New far infra-red window materials-from zinc sulphide through calcium lanthanum sulphide to diamond,” Glass Technol.32, 35–39 (1991).
  6. E. M. Gavrishchuk and Ė. V. Yashina, “Zinc sulfide and zinc selenide optical elements for IR engineering,” J. Opt. Technol.71(12), 822–827 (2004). [CrossRef]
  7. S. P. Wang, “Zinc sulfide crystals for optical components,” United States Patent, US 8071466 B1 (2011).
  8. F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beam for photonic applications,” Laser Photonics Rev.6(5), 622–640 (2012). [CrossRef]
  9. J. H. Zhao, T. Liu, S. S. Guo, J. Guan, and X. L. Wang, “Optical properties of planar waveguides on ZnWO₄ formed by carbon and helium ion implantation and effects of annealing,” Opt. Express18(18), 18989–18996 (2010). [CrossRef] [PubMed]
  10. F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater.29(11), 1523–1542 (2007). [CrossRef]
  11. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys.92(11), 6477–6483 (2002). [CrossRef]
  12. W. Wesch, C. S. Schnohr, P. Kluth, Z. S. Hussain, L. L. Araujo, R. Giulian, D. J. Sprouster, A. P. Byrne, and M. C. Ridgway, “Structural modification of swift heavy ion irradiated amorphous Ge layers,” J. Phys. D Appl. Phys.42(11), 115402 (2009). [CrossRef]
  13. S. Salleh, M. N. Dalimin, and H. N. Rutt, “The propagation losses of cold deposited zinc sulphide waveguides,” Adv. Mater. Res.216, 332–336 (2011). [CrossRef]
  14. D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett.94(1), 011109 (2009). [CrossRef]
  15. J. F. Ziegler, Computer Code SRIM, Http://www.srim.org .
  16. J. M. White and P. F. Heidrich, “Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis,” Appl. Opt.15(1), 151–155 (1976). [CrossRef] [PubMed]
  17. Q. Huang, P. Liu, T. Liu, L. Zhang, and X. L. Wang, “Waveguide structures for the visible and near-infrared wavelength regions in near-stoichiometric lithium niobate formed by swift argon-ion irradiation,” Opt. Express20(4), 4213–4218 (2012). [CrossRef] [PubMed]
  18. D. Fluck, D. H. Jundt, P. Günter, M. Fleuster, and Ch. Buchal, “Modeling of refractive index profiles of He+ ionimplanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys.74(10), 6023–6031 (1993). [CrossRef]
  19. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, 1994).
  20. B. Douglas, Leviton and Bradley J. Frey, “Temperature-Dependent Refractive Index of Cleartran (Registered Trademark) ZnS,” NASA Goddard Space Flight Center (2012).
  21. W. C. Lai, S. Chakravarty, X. L. Wang, C. Y. Lin, and R. T. Chen, “On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide,” Opt. Lett.36(6), 984–986 (2011). [CrossRef] [PubMed]
  22. F. Göde, “Annealing temperature effect on the structural, optical and electrical properties of ZnS thin films,” Physica B406(9), 1653–1659 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited