OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4774–4782

Substrate-modified scattering properties of silicon nanostructures for solar energy applications

N. T. Fofang, T. S. Luk, M. Okandan, G. N. Nielson, and I. Brener  »View Author Affiliations

Optics Express, Vol. 21, Issue 4, pp. 4774-4782 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1223 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Enhanced light trapping is an attractive technique for improving the efficiency of thin film silicon solar cells. In this paper, we use FDTD simulations to study the scattering properties of silicon nanostructures on a silicon substrate and their application as enhanced light trappers. We find that the scattered spectrum and angular scattering distribution strongly depend on the excitation direction, that is, from air to substrate or from substrate to air. At the dipole resonance wavelength the scattering angles tend to be very narrow compared to those of silicon nanostructures in the absence of a substrate. Based on these properties, we propose a new thin film silicon solar cell design incorporating silicon nanostructures on both the front and back surfaces for enhanced light trapping.

© 2013 OSA

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(260.5740) Physical optics : Resonance
(290.5850) Scattering : Scattering, particles
(350.6050) Other areas of optics : Solar energy
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Solar Energy

Original Manuscript: December 27, 2012
Revised Manuscript: February 13, 2013
Manuscript Accepted: February 13, 2013
Published: February 19, 2013

N. T. Fofang, T. S. Luk, M. Okandan, G. N. Nielson, and I. Brener, "Substrate-modified scattering properties of silicon nanostructures for solar energy applications," Opt. Express 21, 4774-4782 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett.75(8), 1063–1065 (1999). [CrossRef]
  2. N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett.9(3), 1255–1259 (2009). [CrossRef] [PubMed]
  3. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett.6(4), 827–832 (2006). [CrossRef] [PubMed]
  4. S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: Nanoparticles with built-in Fano resonances,” Nano Lett.10(7), 2694–2701 (2010). [CrossRef] [PubMed]
  5. N. T. Fofang, N. K. Grady, Z. Y. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton-plasmon coupling in a J-aggregate-Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett.11(4), 1556–1560 (2011). [CrossRef] [PubMed]
  6. N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett.8(10), 3481–3487 (2008). [CrossRef] [PubMed]
  7. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano6(6), 5489–5497 (2012). [CrossRef] [PubMed]
  8. G. Pellegrini, P. Mazzoldi, and G. Mattei, “Asymmetric plasmonic nanoshells as subwavelength directional nanoantennas and color nanorouters: a multipole interference approach,” J. Phys. Chem. C116(40), 21536–21546 (2012). [CrossRef]
  9. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008). [CrossRef]
  10. M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett.9(5), 2188–2192 (2009). [CrossRef] [PubMed]
  11. S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys.109(7), 073105 (2011). [CrossRef]
  12. K. C. Vernon, A. M. Funston, C. Novo, D. E. Gómez, P. Mulvaney, and T. J. Davis, “Influence of particle-substrate interaction on localized plasmon resonances,” Nano Lett.10(6), 2080–2086 (2010). [CrossRef] [PubMed]
  13. H. J. Chen, T. Ming, S. R. Zhang, Z. Jin, B. C. Yang, and J. F. Wang, “Effect of the dielectric properties of substrates on the scattering patterns of gold nanorods,” ACS Nano5(6), 4865–4877 (2011). [CrossRef] [PubMed]
  14. H. J. Chen, L. Shao, T. Ming, K. C. Woo, Y. C. Man, J. F. Wang, and H. Q. Lin, “Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates,” ACS Nano5(8), 6754–6763 (2011). [CrossRef] [PubMed]
  15. Y. Wu and P. Nordlander, “Finite-difference time-domain modeling of the optical properties of nanoparticles near dielectric substrates,” J. Phys. Chem. C114(16), 7302–7307 (2010). [CrossRef]
  16. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun.3,692 (2012).
  17. Lumerical FDTD Solutions, www.lumerical.com .
  18. J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012). [CrossRef] [PubMed]
  19. A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett.12(12), 6459–6463 (2012). [CrossRef] [PubMed]
  20. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12(7), 3749–3755 (2012). [CrossRef] [PubMed]
  21. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express19(6), 4815–4826 (2011). [CrossRef] [PubMed]
  22. F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett.96(3), 033113 (2010). [CrossRef]
  23. E. Xifré-Pérez, L. Shi, U. Tuzer, R. Fenollosa, F. Ramiro-Manzano, R. Quidant, and F. Meseguer, “Mirror-image-induced magnetic modes,” ACS Nano7(1), 664–668 (2013). [CrossRef] [PubMed]
  24. F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express19(25), 25230–25241 (2011). [CrossRef] [PubMed]
  25. B. Rolly, B. Stout, and N. Bonod, “Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles,” Opt. Express20(18), 20376–20386 (2012). [CrossRef] [PubMed]
  26. A. Goetzberger, “Optical confinement in thin Si-solar cells by diffuse back reflectors,” 15th Photovoltaic Specialists Conference, (1981)
  27. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am.72(7), 899–907 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited