OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4817–4825

Imaging of broadband terahertz beams using an array of antenna-coupled microbolometers operating at room temperature

Jonathan Oden, Jérome Meilhan, Jérémy Lalanne-Dera, Jean-François Roux, Frédéric Garet, Jean-Louis Coutaz, and François Simoens  »View Author Affiliations


Optics Express, Vol. 21, Issue 4, pp. 4817-4825 (2013)
http://dx.doi.org/10.1364/OE.21.004817


View Full Text Article

Enhanced HTML    Acrobat PDF (3120 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present results of 2D real-time imaging of terahertz (THz) beam generated by a photoconductive antenna driven by a femtosecond oscillator. The detector, operating at room temperature, is a 320 x 240 array of antenna-coupled microbolometers with integrated CMOS read-out electronics delivering 25 images per second. High quality images of broadband THz beams covering the 0.1-2 THz range are recorded while maintaining a signal-to-noise ratio of 10 for detected THz power as low as 25 nW. The compactness of the easy-to-use uncooled camera makes it very useful for the alignment of systems such as THz time-domain spectrometers and for the characterization of emitters, optics and other components.

© 2013 OSA

OCIS Codes
(040.2235) Detectors : Far infrared or terahertz
(110.6795) Imaging systems : Terahertz imaging
(040.6808) Detectors : Thermal (uncooled) IR detectors, arrays and imaging

ToC Category:
Detectors

History
Original Manuscript: October 11, 2012
Revised Manuscript: November 19, 2012
Manuscript Accepted: December 3, 2012
Published: February 20, 2013

Virtual Issues
February 25, 2013 Spotlight on Optics

Citation
Jonathan Oden, Jérome Meilhan, Jérémy Lalanne-Dera, Jean-François Roux, Frédéric Garet, Jean-Louis Coutaz, and François Simoens, "Imaging of broadband terahertz beams using an array of antenna-coupled microbolometers operating at room temperature," Opt. Express 21, 4817-4825 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-4-4817


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. B. Hu, M. C. Nuss, and B. B. Hu, “Imaging with terahertz waves,” Opt. Lett.20(16), 1716–1718 (1995). [CrossRef] [PubMed]
  2. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - modern techniques and applications,” Laser & Photon. Rev.5(1), 124–166 (2011). [CrossRef]
  3. A. W. M. Lee, B. S. Williams, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 X 240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett.18(13), 1415–1417 (2006). [CrossRef]
  4. E. Grossman, C. Dietlein, J. Ala-Laurinaho, M. Leivo, L. Gronberg, M. Gronholm, P. Lappalainen, A. Rautiainen, A. Tamminen, and A. Luukanen, “Passive terahertz camera for standoff security screening,” Appl. Opt.49(19), E106–E120 (2010). [CrossRef] [PubMed]
  5. T. May, G. Zieger, S. Anders, V. Zakosarenko, H.-G. Meyer, M. Schubert, M. Starkloff, M. Rößler, G. Thorwirth, and U. Krause, “Safe VISITOR: VISible, Infrared and Terahertz Object Recognition for security screening application,” Proc. SPIE7309, 73090E, 73090E-8 (2009). [CrossRef]
  6. F. Rodriguez-Morales, S. Yngvesson, R. Zannoni, E. Gerecht, D. Gu, N. Wadefalk, and J. Nicholson, “Development of Integrated HEB/MMIC Receivers for Near-Range Terahertz Imaging,” IEEE Trans. Microw. Theory Tech.54(6), 2301–2311 (2006). [CrossRef]
  7. See http://www.ophiropt.com/user_files/laser/beam_profilers/Pyroelectric-array-camera.pdf
  8. S. Sankaran and K. O. Kenneth, “Schottky barrier diodes for millimeter wave detection in a foundry CMOS process,” IEEE Electron Device Lett.26(7), 492–494 (2005). [CrossRef]
  9. L. Minkevičius, V. Tamošiunas, I. Kašalynas, D. Seliuta, G. Valušis, A. Lisauskas, S. Boppel, H. G. Roskos, and K. Köhler, “Terahertz heterodyne imaging with InGaAs-based bow-tie diodes,” Appl. Phys. Lett.99(13), 131101 (2011). [CrossRef]
  10. F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, and W. Knap, “Broadband terahertz imaging with highly sensitive silicon CMOS detectors,” Opt. Express19(8), 7827–7832 (2011). [CrossRef] [PubMed]
  11. U. R. Pfeiffer, “Silicon CMOS/SiGe transceiver circuits for THz applications,” in Proceedings of IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (Institute of Electrical and Electronics Engineers, New York, 2012), pp. 159–162.
  12. F. Simoens, T. Durand, J. Meilhan, P. Gellie, W. Maineult, C. Sirtori, S. Barbieri, H. Beere, and D. Ritchie, “Terahertz imaging with a quantum cascade laser and amorphous-silicon microbolometer array,” Proc. SPIE7485, 74850M, 74850M-10 (2009). [CrossRef]
  13. J. Meilhan, S. Pocas, J.-L. Ouvrier-Buffet, T. Maillou, P. Gellie, and S. Barbieri, “THz uncooled microbolometer array development for active imaging and spectroscopy applications,” in Proceedings of IEEE 35th International Conference on Infrared Millimeter and Terahertz Waves (Institute of Electrical and Electronics Engineers, New York, 2010), pp. 1–2.
  14. N. Oda, “Uncooled bolometer-type THz focal plane array and camera for real-time imaging,” C. R. Phys.11(7-8), 496–509 (2010). [CrossRef]
  15. M. Bolduc, M. Terroux, L. Marchese, B. Tremblay, E. Savard, M. Doucet, H. Oulachgar, C. Alain, H. Jeronimek, and A. Bergeron, “THz imaging and radiometric measurements using a microbolometer-based camera,” in Proceedings of IEEE 36th International Conference on Infrared Millimeter and Terahertz Waves (Institute of Electrical and Electronics Engineers, New York, 2011), pp. 1–2.
  16. J. F. Molloy, M. Naftaly, and R. A. Dudley, “Characterization of Terahertz Beam Profile and Propagation,” IEEE J. Sel. Top. Quantum Electron. (to be published).
  17. L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron.2(3), 739–746 (1996). [CrossRef]
  18. F. Simoens, J. Meilhan, B. Delplanque, S. Gidon, G. Lasfargues, J. Lalanne Dera, D. T. Nguyen, J.-L. Ouvrier-Buffet, S. Pocas, T. Maillou, O. Cathabard, and S. Barbieri, “Real-time imaging with THz fully-customized uncooled amorphous-silicon microbolometer focal plane arrays,” Proc. SPIE8363, 83630D, 83630D-12 (2012). [CrossRef]
  19. D. T. Nguyen, F. Simoens, J.-L. Ouvrier-Buffet, J. Meilhan, and J.-L. Coutaz, “Broadband THz uncooled antenna-coupled microbolometer array – electromagnetic design, simulations and measurements,” IEEE Trans. THz Sci. Technol.2, 299–305 (2012).
  20. See http://www.laserquantum.com for more information about the TeraSed photoconductive emitter.
  21. A. Dreyhaupt, S. Winnerl, M. Helm, and T. Dekorsy, “Optimum excitation conditions for the generation of high-electric-field terahertz radiation from an oscillator-driven photoconductive device,” Opt. Lett.31(10), 1546–1548 (2006). [CrossRef] [PubMed]
  22. J. Z. Xu and X.-C. Zhang, “Optical rectification in an area with a diameter comparable to or smaller than the center wavelength of terahertz radiation,” Opt. Lett.27(12), 1067–1069 (2002). [CrossRef] [PubMed]
  23. This concept of effective area is useful when no simple mathematical description of the beam shape can be given. For instance, considering pixels which side is of unity length, a 2D Gaussian beam of diameter 2w (calculated at e−1) with magnitude of 1 will support a total energy of πw2, so its effective area Seff would also be πw2. This obviously implies that a Gaussian beam can be approximated by a cylinder of diameter 2w, as it is often done in optics. Finally, let us note that for linear THz-matter interaction this normalized coefficient Seff should be independent of the excitation power.
  24. B. Clough, J. Liu, and X.-C. Zhang, ““All air-plasma” terahertz spectroscopy,” Opt. Lett.36(13), 2399–2401 (2011). [CrossRef] [PubMed]
  25. P. Kužel, M. A. Khazan, and J. Kroupa, “Spatiotemporal transformations of ultrashort terahertz pulses,” J. Opt. Soc. Am. B16(10), 1795–1800 (1999). [CrossRef]
  26. Because of different excitation parameters, the emitted THz power was reduced by a factor of 2.66 for the experimental data plotted in Fig. 7(b) and 7(c), as compared to the data plotted in Fig. 7(a).
  27. M. Naftaly, R. E. Miles, and P. J. Greenslade, “TeraHertz transmission in polymer materials – a data library,” in Proceedings of IEEE 32th International Conference on Infrared, Millimeter, and Terahertz Waves (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 819–820.
  28. J. Meilhan, F. Simoens, J. Lalanne Dera, S. Gidon, G. Lasfargues, D. T. Nguyen, and J. L. Ouvrier-Buffet, “Terahertz frequency agility of uncooled antenna-coupled micro-bolometer arrays,” in Proceedings of IEEE 37th International Conference on Infrared, Millimeter, and Terahertz Waves (Institute of Electrical and Electronics Engineers, New York, 2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited