OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4908–4916

Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2

Philipp Tonndorf, Robert Schmidt, Philipp Böttger, Xiao Zhang, Janna Börner, Andreas Liebig, Manfred Albrecht, Christian Kloc, Ovidiu Gordan, Dietrich R. T. Zahn, Steffen Michaelis de Vasconcellos, and Rudolf Bratschitsch  »View Author Affiliations


Optics Express, Vol. 21, Issue 4, pp. 4908-4916 (2013)
http://dx.doi.org/10.1364/OE.21.004908


View Full Text Article

Enhanced HTML    Acrobat PDF (1301 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We mechanically exfoliate mono- and few-layers of the transition metal dichalcogenides molybdenum disulfide, molybdenum diselenide, and tungsten diselenide. The exact number of layers is unambiguously determined by atomic force microscopy and high-resolution Raman spectroscopy. Strong photoluminescence emission is caused by the transition from an indirect band gap semiconductor of bulk material to a direct band gap semiconductor in atomically thin form.

© 2013 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(180.1790) Microscopy : Confocal microscopy
(300.6250) Spectroscopy : Spectroscopy, condensed matter
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(300.6330) Spectroscopy : Spectroscopy, inelastic scattering including Raman
(300.6450) Spectroscopy : Spectroscopy, Raman
(300.6470) Spectroscopy : Spectroscopy, semiconductors
(160.4236) Materials : Nanomaterials
(180.5655) Microscopy : Raman microscopy

ToC Category:
Spectroscopy

History
Original Manuscript: December 17, 2012
Revised Manuscript: January 21, 2013
Manuscript Accepted: January 21, 2013
Published: February 20, 2013

Citation
Philipp Tonndorf, Robert Schmidt, Philipp Böttger, Xiao Zhang, Janna Börner, Andreas Liebig, Manfred Albrecht, Christian Kloc, Ovidiu Gordan, Dietrich R. T. Zahn, Steffen Michaelis de Vasconcellos, and Rudolf Bratschitsch, "Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2," Opt. Express 21, 4908-4916 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-4-4908


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. K. Geim, “Graphene: status and prospects,” Science324(5934), 1530–1534 (2009). [CrossRef] [PubMed]
  2. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A.102(30), 10451–10453 (2005). [CrossRef] [PubMed]
  3. V. Podzorov, M. E. Gershenson, C. Kloc, R. Zeis, and E. Bucher, “High-mobility field-effect transistors based on transition metal dichalcogenides,” Appl. Phys. Lett.84(17), 3301–3304 (2004). [CrossRef]
  4. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol.6(3), 147–150 (2011). [CrossRef] [PubMed]
  5. H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, “High-performance single layered WSe₂ p-FETs with chemically doped contacts,” Nano Lett.12(7), 3788–3792 (2012). [CrossRef] [PubMed]
  6. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett.105(13), 136805 (2010). [CrossRef] [PubMed]
  7. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett.10(4), 1271–1275 (2010). [CrossRef] [PubMed]
  8. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano6(1), 74–80 (2012). [CrossRef] [PubMed]
  9. H. S. Lee, S. W. Min, Y. G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, and S. Im, “MoS₂ nanosheet phototransistors with thickness-modulated optical energy gap,” Nano Lett.12(7), 3695–3700 (2012). [CrossRef] [PubMed]
  10. S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman, and J. Wu, “Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2.,” Nano Lett.12(11), 5576–5580 (2012). [CrossRef] [PubMed]
  11. H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, and X. Cui, “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides,” arXiv:1208.5864 (2012).
  12. R. Späh, U. Elrod, M. Lux-Steiner, E. Bucher, and S. Wagner, “pn junctions in tungsten diselenide,” Appl. Phys. Lett.43(1), 79–81 (1983). [CrossRef]
  13. R. Gordon, D. Yang, E. Crozier, D. Jiang, and R. Frindt, “Structures of exfoliated single layers of WS2, MoS2, and MoSe2 in aqueous suspension,” Phys. Rev. B65(12), 125407 (2002). [CrossRef]
  14. A. R. Beal, W. Y. Liang, and H. P. Hughes, “Kramers-Kronig analysis of the reflectivity spectra of 3R-WS2 and 2H-WSe2,” J. Phys.C, 9, 2449–2457 (1976).
  15. A. Castellanos-Gomez, N. Agraït, and G. Rubio-Bollinger, “Optical identification of atomically thin dichalcogenide crystals,” Appl. Phys. Lett.96(21), 213116 (2010). [CrossRef]
  16. M. M. Benameur, B. Radisavljevic, J. S. Héron, S. Sahoo, H. Berger, and A. Kis, “Visibility of dichalcogenide nanolayers,” Nanotechnology22(12), 125706 (2011). [CrossRef] [PubMed]
  17. C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single- and few-layer MoS2.,” ACS Nano4(5), 2695–2700 (2010). [CrossRef] [PubMed]
  18. J. Verble and T. Wieting, “Lattice mode degeneracy in MoS2 and other layer compounds,” Phys. Rev. Lett.25(6), 362–365 (1970). [CrossRef]
  19. G. Frey, R. Tenne, M. Matthews, M. Dresselhaus, and G. Dresselhaus, “Raman and resonance Raman investigation of MoS2 nanoparticles,” Phys. Rev. B60(4), 2883–2892 (1999). [CrossRef]
  20. T. Wieting and J. Verble, “Infrared and Raman studies of long-wavelength optical phonons in hexagonal MoS2,” Phys. Rev. B3(12), 4286–4292 (1971). [CrossRef]
  21. C. Ataca, M. Topsakal, E. Aktürk, and S. Ciraci, “A comparative study of lattice dynamics of three- and two-dimensional MoS2,” J. Phys. Chem. C115(33), 16354–16361 (2011). [CrossRef]
  22. T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schüller, “Low-temperature photocarrier dynamics in monolayer MoS2,” Appl. Phys. Lett.99(10), 102109 (2011). [CrossRef]
  23. H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From bulk to monolayer MoS2: evolution of Raman scattering,” Adv. Funct. Mater.22(7), 1385–1390 (2012). [CrossRef]
  24. A. Molina-Sánchez and L. Wirtz, “Phonons in single-layer and few-layer MoS2 and WS2,” Phys. Rev. B84(15), 155413 (2011). [CrossRef]
  25. T. Sekine, M. Izumi, T. Nakashizu, K. Uchinokura, and E. Matsuura, “Raman scattering and infrared reflectance in 2H-MoSe2,” J. Phys. Soc. Jpn.49(3), 1069–1077 (1980). [CrossRef]
  26. T. J. Wieting, A. Grisel, and F. Levy, “Interlayer bonding and localized charge in MoSe2 and α-MoTe2,” Physica B+C99(1-4), 337–342 (1980). [CrossRef]
  27. S. Sugai and T. Ueda, “High-pressure Raman spectroscopy in the layered materials 2H-MoS2, 2H-MoSe2, and 2H-MoTe2,” Phys. Rev. B26(12), 6554–6558 (1982). [CrossRef]
  28. Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, and W. Tang, “First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers,” Physica B406(11), 2254–2260 (2011). [CrossRef]
  29. H. S. S. R. Matte, B. Plowman, R. Datta, and C. N. R. Rao, “Graphene analogues of layered metal selenides,” Dalton Trans.40(40), 10322–10325 (2011). [CrossRef] [PubMed]
  30. D. G. Mead and J. C. Irwin, “Long wavelength optic phonons in WSe2,” Can. J. Phys.55(5), 379–382 (1977). [CrossRef]
  31. A. Kuc, N. Zibouche, and T. Heine, “Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2,” Phys. Rev. B83(24), 245213 (2011). [CrossRef]
  32. R. Coehoorn, C. Haas, and R. de Groot, “Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps,” Phys. Rev. B Condens. Matter35(12), 6203–6206 (1987). [CrossRef] [PubMed]
  33. A. R. Beal and H. P. Hughes, “Kramers-Kronig analysis of the reflectivity spectra of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2,” J. Phys. Chem.12, 881–890 (1979).
  34. A. Anedda and E. Fortin, “Exciton spectra in MoSe2,” J. Phys. Chem. Solids41(8), 865–869 (1980). [CrossRef]
  35. J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Klitzing, and A. Yacoby, “Observation of electron–hole puddles in graphene using a scanning single-electron transistor,” Nat. Phys.4(2), 144–148 (2008). [CrossRef]
  36. Y. Ma, Y. Dai, M. Guo, C. Niu, J. Lu, and B. Huang, “Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers,” Phys. Chem. Chem. Phys.13(34), 15546–15553 (2011). [CrossRef] [PubMed]
  37. W. S. Yun, S. Han, S. C. Hong, I. G. Kim, and J. Lee, “Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te),” Phys. Rev. B85(3), 033305 (2012). [CrossRef]
  38. G. Plechinger, F. X. Schrettenbrunner, J. Eroms, D. Weiss, C. Schüller, and T. Korn, “Low-temperature photoluminescence of oxide-covered single-layer MoS2,” Phys. Status Solidi (RRL)6(3), 126–128 (2012). [CrossRef]
  39. M. P. Deshpande, G. K. Solanki, and M. K. Agarwal, “Optical band gap in tungsten diselenide single crystals intercalated by indium,” Mater. Lett.43(1-2), 66–72 (2000). [CrossRef]
  40. J. A. Wilson and A. D. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys.18(73), 193–335 (1969). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited