OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4917–4930

Magnetic modulation of surface plasmon modes in magnetoplasmonic metal-insulator-metal cavities

E. Ferreiro-Vila, J. M. García-Martín, A. Cebollada, G. Armelles, and M. U. González  »View Author Affiliations


Optics Express, Vol. 21, Issue 4, pp. 4917-4930 (2013)
http://dx.doi.org/10.1364/OE.21.004917


View Full Text Article

Enhanced HTML    Acrobat PDF (1848 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The magnetic modulation of the surface plasmon-polariton (SPP) wavevector is experimentally and theoretically studied for the plasmonic modes excited in metal-insulator-metal (MIM) magnetoplasmonic cavities. For this purpose, Ag/SiO2/Ag multilayers with different SiO2 layer thickness in which a thin Co layer is positioned near the top Ag/SiO2 interface, near the bottom SiO2/Ag one, or near both of them, are studied. The magnetoplasmonic MIM cavities present symmetric (SM) and antisymmetric (AM) plasmonic modes, of different wavevector and electromagnetic field profiles inside the MIM cavity. We show that the magnetic SPP wavevector modulation strongly depends on which mode is considered, the cavity thickness, and the number and specific location of Co layers within the structure. With only one ferromagnetic layer, a net modulation is obtained, of higher magnitude as we reduce the SiO2 layer thickness. The introduction of a second Co layer in the structure reduces the modulation due to the non-reciprocal character of SPP modes under an applied magnetic field. Moreover, we demonstrate that the non-reciprocal nature of the SPP modulation can be experimentally visualized in the magnetic hysteresis loops under plasmon excitation conditions by using two Co layers with different magnetization switching fields.

© 2013 OSA

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(230.3810) Optical devices : Magneto-optic systems
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(250.5403) Optoelectronics : Plasmonics
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Optics at Surfaces

History
Original Manuscript: December 21, 2012
Manuscript Accepted: January 20, 2013
Published: February 20, 2013

Citation
E. Ferreiro-Vila, J. M. García-Martín, A. Cebollada, G. Armelles, and M. U. González, "Magnetic modulation of surface plasmon modes in magnetoplasmonic metal-insulator-metal cavities," Opt. Express 21, 4917-4930 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-4-4917


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003). [CrossRef] [PubMed]
  2. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science317(5839), 783–787 (2007). [CrossRef] [PubMed]
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  4. H. Raether, “Surface Plasmons on Smooth and Rough Surfaces and on Gratings,” in Springer Tracts in Modern Physics (Springer-Verlag, 1988), Vol. 111.
  5. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006). [CrossRef] [PubMed]
  6. B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett.88(9), 094104 (2006). [CrossRef]
  7. J.-C. Weeber, Y. Lacroute, and A. Dereux, “Optical near-field distributions of surface plasmon waveguide modes,” Phys. Rev. B68(11), 115401 (2003). [CrossRef]
  8. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  9. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005). [CrossRef]
  10. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev.108(2), 462–493 (2008). [CrossRef] [PubMed]
  11. B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett.31(8), 1085–1087 (2006). [CrossRef] [PubMed]
  12. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005). [CrossRef] [PubMed]
  13. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett.83(21), 4357–4360 (1999). [CrossRef]
  14. I. D. Rukhlenko, A. Pannipitiya, M. Premaratne, and G. P. Agrawal, “Exact dispersion relation for nonlinear plasmonic waveguides,” Phys. Rev. B84(11), 113409 (2011). [CrossRef]
  15. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev.182(2), 539–554 (1969). [CrossRef]
  16. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006). [CrossRef]
  17. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A21(12), 2442–2446 (2004). [CrossRef] [PubMed]
  18. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett.31(22), 3288–3290 (2006). [CrossRef] [PubMed]
  19. J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett.6(9), 1928–1932 (2006). [CrossRef] [PubMed]
  20. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett.96(9), 097401 (2006). [CrossRef] [PubMed]
  21. S. A. Maier, “Effective mode volume of nanoscale plasmon cavities,” Opt. Quantum Electron.38(1-3), 257–267 (2006). [CrossRef]
  22. P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express14(26), 13030–13042 (2006). [CrossRef] [PubMed]
  23. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics1(7), 402–406 (2007). [CrossRef]
  24. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85(24), 5833–5835 (2004). [CrossRef]
  25. M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film Barium Titanate plasmonic interferometers,” Nano Lett.8(11), 4048–4052 (2008). [CrossRef] [PubMed]
  26. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A Metal-Oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009). [CrossRef] [PubMed]
  27. V. I. Safarov, V. A. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marlière, “Magneto-optical effects enhanced by surface plasmons in metallic multilayer films,” Phys. Rev. Lett.73(26), 3584–3587 (1994). [CrossRef] [PubMed]
  28. C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. I. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B64(23), 235422 (2001). [CrossRef]
  29. J. B. González-Díaz, A. García-Martín, G. Armelles, J. M. García-Martín, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B76(15), 153402 (2007). [CrossRef]
  30. G. Armelles, J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, M. Ujué González, S. Acimovic, J. Cesario, R. Quidant, and G. Badenes, “Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers,” Opt. Express16(20), 16104–16112 (2008). [CrossRef] [PubMed]
  31. V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics4(2), 107–111 (2010). [CrossRef]
  32. C. Clavero, K. Yang, J. R. Skuza, and R. A. Lukaszew, “Magnetic field modulation of intense surface plasmon polaritons,” Opt. Express18(8), 7743–7752 (2010). [CrossRef] [PubMed]
  33. C. Clavero, K. Yang, J. R. Skuza, and R. A. Lukaszew, “Magnetic-field modulation of surface plasmon polaritons on gratings,” Opt. Lett.35(10), 1557–1559 (2010). [CrossRef] [PubMed]
  34. J. F. Torrado, J. B. González-Díaz, M. U. González, A. García-Martín, and G. Armelles, “Magneto-optical effects in interacting localized and propagating surface plasmon modes,” Opt. Express18(15), 15635–15642 (2010). [CrossRef] [PubMed]
  35. D. Martín-Becerra, J. B. González-Díaz, V. V. Temnov, A. Cebollada, G. Armelles, T. Thomay, A. Leitenstorfer, R. Bratschitsch, A. García-Martín, and M. U. González, “Enhancement of the magnetic modulation of surface plasmon polaritons in Au/Co/Au films,” Appl. Phys. Lett.97(18), 183114 (2010). [CrossRef]
  36. D. Martín-Becerra, V. V. Temnov, T. Thomay, A. Leitenstorfer, R. Bratschitsch, G. Armelles, A. García-Martín, and M. U. González, “Spectral dependence of the magnetic modulation of surface plasmon polaritons in noble/ferromagnetic/noble metal films,” Phys. Rev. B86(3), 035118 (2012). [CrossRef]
  37. E. Ferreiro Vila, X. M. Bendana Sueiro, J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada Navarro, G. Armelles Reig, D. Meneses Rodriguez, and E. Muñoz Sandoval, “Surface plasmon resonance effects in the magneto-optical activity of Ag-Co-Ag trilayers,” IEEE Trans. Magn.44(11), 3303–3306 (2008). [CrossRef]
  38. E. Ferreiro-Vila, J. B. González-Díaz, R. Fermento, M. U. González, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, D. Meneses-Rodríguez, and E. Muñoz-Sandoval, “Intertwined magneto-optical and plasmonic effects in Ag/Co/Ag layered structures,” Phys. Rev. B80(12), 125132 (2009). [CrossRef]
  39. E. Ferreiro-Vila, M. Iglesias, E. Paz, F. J. Palomares, F. Cebollada, J. M. González, G. Armelles, J. M. García-Martín, and A. Cebollada, “Magneto-optical and magnetoplasmonic properties of epitaxial and polycrystalline Au/Fe/Au trilayers,” Phys. Rev. B83(20), 205120 (2011). [CrossRef]
  40. D. Regatos, D. Fariña, A. Calle, A. Cebollada, B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys.108(5), 054502 (2010). [CrossRef]
  41. B. Sepúlveda, L. M. Lechuga, and G. Armelles, “Magnetooptic effects in surface-plasmon-polaritons slab waveguides,” J. Lightwave Technol.24(2), 945–955 (2006). [CrossRef]
  42. J. B. Khurgin, “Optical isolating action in surface plasmon polaritons,” Appl. Phys. Lett.89(25), 251115 (2006). [CrossRef]
  43. Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett.100(2), 023902 (2008). [CrossRef] [PubMed]
  44. D. Weller, G. R. Harp, R. F. C. Farrow, A. Cebollada, and J. Sticht, “Orientation dependence of the polar Kerr effect in fcc and hcp Co,” Phys. Rev. Lett.72(13), 2097–2100 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited