OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 5014–5024

Near-infrared Hong-Ou-Mandel interference on a silicon quantum photonic chip

Xinan Xu, Zhenda Xie, Jiangjun Zheng, Junlin Liang, Tian Zhong, Mingbin Yu, Serdar Kocaman, Guo-Qiang Lo, Dim-Lee Kwong, Dirk R. Englund, Franco N. C. Wong, and Chee Wei Wong  »View Author Affiliations

Optics Express, Vol. 21, Issue 4, pp. 5014-5024 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1580 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Near-infrared Hong-Ou-Mandel quantum interference is observed in silicon nanophotonic directional couplers with raw visibilities on-chip at 90.5%. Spectrally-bright 1557-nm two-photon states are generated in a periodically-poled KTiOPO4 waveguide chip, serving as the entangled photon source and pumped with a self-injection locked laser, for the photon statistical measurements. Efficient four-port coupling in the communications C-band and in the high-index-contrast silicon photonics platform is demonstrated, with matching theoretical predictions of the quantum interference visibility. Constituents for the residual quantum visibility imperfection are examined, supported with theoretical analysis of the sequentially-triggered multipair biphoton, towards scalable high-bitrate quantum information processing and communications. The on-chip HOM interference is useful towards scalable high-bitrate quantum information processing and communications.

© 2013 OSA

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(230.7370) Optical devices : Waveguides
(270.5290) Quantum optics : Photon statistics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: December 3, 2012
Revised Manuscript: January 5, 2013
Manuscript Accepted: January 7, 2013
Published: February 21, 2013

Xinan Xu, Zhenda Xie, Jiangjun Zheng, Junlin Liang, Tian Zhong, Mingbin Yu, Serdar Kocaman, Guo-Qiang Lo, Dim-Lee Kwong, Dirk R. Englund, Franco N. C. Wong, and Chee Wei Wong, "Near-infrared Hong-Ou-Mandel interference on a silicon quantum photonic chip," Opt. Express 21, 5014-5024 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Weedbrook, S. Pirandola, S. Lloyd, and T. C. Ralph, “Quantum cryptography approaching the classical limit,” Phys. Rev. Lett.105(11), 110501 (2010). [CrossRef] [PubMed]
  2. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” presented at International Conference on Computers, Systems and Signal Processing, Bangalore, India, Dec 10–12, 1984.
  3. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195 (2002). [CrossRef]
  4. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett.67(6), 661–663 (1991). [CrossRef] [PubMed]
  5. V. Scarani, A. Acín, G. Ribordy, and N. Gisin, “Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations,” Phys. Rev. Lett.92(5), 057901 (2004). [CrossRef] [PubMed]
  6. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2010).
  7. N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett.95(21), 210505 (2005). [CrossRef] [PubMed]
  8. A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science329(5998), 1500–1503 (2010). [CrossRef] [PubMed]
  9. N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics1(3), 165–171 (2007). [CrossRef]
  10. M. A. Albota, F. N. C. Wong, and J. H. Shapiro, “Polarization-independent frequency conversion for quantum optical communication,” J. Opt. Soc. Am. B23(5), 918–924 (2006). [CrossRef]
  11. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of nonclassical light on a chip via photon-induced tunneling and blockade,” Nat. Phys.4(11), 859–863 (2008). [CrossRef]
  12. J. Gao, F. W. Sun, and C. W. Wong, “Implementation scheme for quantum controlled phase-flip gate through quantum dot in slow-light photonic crystal waveguide,” Appl. Phys. Lett.93(15), 151108 (2008). [CrossRef]
  13. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007). [CrossRef] [PubMed]
  14. H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science298(5597), 1372–1377 (2002). [CrossRef] [PubMed]
  15. Y. F. Xiao, J. Gao, X. B. Zou, J. F. McMillan, X. Yang, Y. L. Chen, Z. F. Han, G. C. Guo, and C. W. Wong, “Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations,” New J. Phys.10(12), 123013 (2008). [CrossRef]
  16. Y. F. Xiao, J. Gao, X. Yang, R. Bose, G. C. Guo, and C. W. Wong, “Nanocrystals in silicon photonic crystal standing-wave cavities as spin-photon phase gates for quantum information processing,” Appl. Phys. Lett.91(15), 151105 (2007). [CrossRef]
  17. F. W. Sun, B. H. Liu, C. W. Wong, and G. C. Guo, “Permutation asymmetry inducing entanglement between degrees of freedom in multiphoton states,” Phys. Rev. A78(1), 015804 (2008). [CrossRef]
  18. T. Yu and J. H. Eberly, “Sudden death of entanglement,” Science323(5914), 598–601 (2009). [CrossRef] [PubMed]
  19. A. Veitia, J. Jing, T. Yu, and C. W. Wong, “Mutual preservation of entanglement,” Phys. Lett. A376(44), 2755–2764 (2012). [CrossRef]
  20. A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature466(7303), 217–220 (2010). [CrossRef] [PubMed]
  21. J. D. Franson, “Two-photon interferometry over large distances,” Phys. Rev. A44(7), 4552–4555 (1991). [CrossRef] [PubMed]
  22. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59(18), 2044–2046 (1987). [CrossRef] [PubMed]
  23. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75(24), 4337–4341 (1995). [CrossRef] [PubMed]
  24. J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics3(6), 346–350 (2009). [CrossRef]
  25. D. Bonneau, E. Engin, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O'Brien, and M. G. Thompson, “Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits,” New J. Phys.14(4), 045003 (2012). [CrossRef]
  26. A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat Commun2, 566 (2011). [CrossRef] [PubMed]
  27. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett.105(20), 200503 (2010). [CrossRef] [PubMed]
  28. A. Reinhard, T. Volz, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Strongly correlated photons on a chip,” Nat. Photonics6(2), 93–96 (2011). [CrossRef]
  29. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320(5876), 646–649 (2008). [CrossRef] [PubMed]
  30. J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature426(6964), 264–267 (2003). [CrossRef] [PubMed]
  31. F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, and C. F. RoosJ. Eschner and R. Blatt, “Realization of the Cirac–Zoller controlled-NOT quantum gate,” Nature422, 408-411(2003). [CrossRef] [PubMed]
  32. M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci Rep2, 321 (2012). [CrossRef] [PubMed]
  33. R. Bose, J. Gao, J. F. McMillan, A. D. Williams, and C. W. Wong, “Cryogenic spectroscopy of ultra-low density colloidal lead chalcogenide quantum dots on chip-scale optical cavities towards single quantum dot near-infrared cavity QED,” Opt. Express17(25), 22474–22483 (2009). [CrossRef] [PubMed]
  34. M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Fiber-based cryogenic and time-resolved spectroscopy of PbS quantum dots,” Opt. Express19(3), 1786–1793 (2011). [CrossRef] [PubMed]
  35. T. Zhong, F. N. Wong, T. D. Roberts, and P. Battle, “High performance photon-pair source based on a fiber-coupled periodically poled KTiOPO4 waveguide,” Opt. Express17(14), 12019–12030 (2009). [CrossRef] [PubMed]
  36. F. W. Sun and C. W. Wong, “Indistinguishability of independent single photons,” Phys. Rev. A79(1), 013824 (2009). [CrossRef]
  37. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8(3), 173–190 (2001). [CrossRef] [PubMed]
  38. E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J.48, 2071–2102 (1969).
  39. R. Chatterjee, M. Yu, A. Stein, D. L. Kwong, L. C. Kimerling, and C. W. Wong, “Demonstration of a hitless bypass switch using nanomechanical perturbation for high-bitrate transparent networks,” Opt. Express18(3), 3045–3058 (2010). [CrossRef] [PubMed]
  40. S. Afifi and R. Dusséaux, “Statistical study of radiation loss from planar optical waveguides: the curvilinear coordinate method and the small perturbation method,” J. Opt. Soc. Am. A27(5), 1171–1184 (2010). [CrossRef] [PubMed]
  41. T. Barwicz and H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol.23(9), 2719–2732 (2005). [CrossRef]
  42. F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photon. Technol. Lett.16(7), 1661–1663 (2004). [CrossRef]
  43. R. G. Hunsperger, Integrated Optics (Springer, 2009).
  44. J. Liang and T. B. Pittman, “Compensating for beamsplitter asymmetries in quantum interference experiments,” J. Opt. Soc. Am. B27(2), 350–353 (2010). [CrossRef]
  45. Z. Zhao, A. N. Zhang, X. Q. Zhou, Y. A. Chen, C. Y. Lu, A. Karlsson, and J. W. Pan, “Experimental realization of optimal asymmetric cloning and telecloning via partial teleportation,” Phys. Rev. Lett.95(3), 030502 (2005). [CrossRef] [PubMed]
  46. L. Bartůšková, M. Dusek, A. Cernoch, J. Soubusta, and J. Fiurásek, “Fiber-optics implementation of an asymmetric phase-covariant quantum cloner,” Phys. Rev. Lett.99(12), 120505 (2007). [CrossRef] [PubMed]
  47. K. Sanaka, K. J. Resch, and A. Zeilinger, “Filtering out photonic Fock states,” Phys. Rev. Lett.96(8), 083601 (2006). [CrossRef] [PubMed]
  48. K. J. Resch, J. L. O’Brien, T. J. Weinhold, K. Sanaka, B. P. Lanyon, N. K. Langford, and A. G. White, “Entanglement generation by Fock-state filtration,” Phys. Rev. Lett.98(20), 203602 (2007). [CrossRef] [PubMed]
  49. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett.28(15), 1302–1304 (2003). [CrossRef] [PubMed]
  50. A. V. Sergienko, Y. H. Shih, and M. H. Rubin, “Experimental evaluation of a two-photon wave packet in type-II parametric downconversion,” J. Opt. Soc. Am. B12(5), 859–862 (1995). [CrossRef]
  51. O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. Wong, and F. X. Kärtner, “Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett.94(8), 083601 (2005). [CrossRef] [PubMed]
  52. T. Zhong, “High performance photon-pair source based on a fiber-coupled periodically poled KTiOPO₄ waveguide,” S.M. thesis (Massachusetts Institute of Technology, 2009).
  53. S. M. Barnett, J. Jeffers, A. Gatti, and R. Loudon, “Quantum optics of lossy beam splitters,” Phys. Rev. A57(3), 2134–2145 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited