OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 5041–5052

Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform

Paolo Pintus, Fabrizio Di Pasquale, and John E. Bowers  »View Author Affiliations

Optics Express, Vol. 21, Issue 4, pp. 5041-5052 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1978 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we present two four-port optical circulators for TE and TM modes, respectively. Exploiting the recent technological development concerning Ce:YIG pulse laser deposition on silicon nitride platform, we design two integrated circulators, which can be used to implement several functions in integrated optics, such as de-interleavers, input/output amplifier isolators and output laser isolators. The proposed devices combine the benefit of low loss silicon nitride waveguides with the non-reciprocal properties of magneto-optical materials. The ring cross-section has been optimized in order to maximize the non-reciprocal phase shift and finally the scattering coefficients have been computed using the transfer matrix method. The material stability and refractive index regularity of silicon nitride, the small micro-ring footprint, and the high wavelength selectivity make these devices particularly attractive.

© 2013 OSA

OCIS Codes
(230.3240) Optical devices : Isolators
(230.3810) Optical devices : Magneto-optic systems
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

Original Manuscript: January 2, 2013
Revised Manuscript: February 1, 2013
Manuscript Accepted: February 1, 2013
Published: February 21, 2013

Paolo Pintus, Fabrizio Di Pasquale, and John E. Bowers, "Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform," Opt. Express 21, 5041-5052 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. R. Zaman, X. Guo, and R. J. Ram, “Semiconductor waveguide isolators,” J. Lightwave Technol.26(2), 291–301 (2008). [CrossRef]
  2. N. Kono, K. Kakihara, K. Saitoh, and M. Koshiba, “Nonreciprocal microresonators for the miniaturization of optical waveguide isolators,” Opt. Express15(12), 7737–7751 (2007). [CrossRef] [PubMed]
  3. Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett.30(15), 1989–1991 (2005). [CrossRef] [PubMed]
  4. W. Śmigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, “Magneto-optical circulator designed for operation in a uniform external magnetic field,” Opt. Lett.35(4), 568–570 (2010). [CrossRef] [PubMed]
  5. R. Takei and T. Mizumoto, “Design and simulation of silicon waveguide optical circulator employing nonreciprocal phase shift,” Jpn. J. Appl. Phys.49(5), 052203 (2010). [CrossRef]
  6. L. Bi, J. Hu, D.-H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical isolators,” Nat. Photonics5(12), 758–762 (2011). [CrossRef]
  7. M. C. Onbasli, T. Goto, K. Taichi, H. Dong, L. Bi, and C. Ross, “Integration of magneto-optical cerium-doped YIG on silicon nitride films for nonreciprocal photonic devices,” in Frontiers in Optics, OSA Technical Digest (online) (Optical Society of America, 2012), paper FTu1A.4.
  8. D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photon. Technol. Lett.24(11), 876–878 (2012). [CrossRef]
  9. S.-Y. Sung, X. Qi, and B. J. Stadler, “Integrating yttrium iron garnet onto nongarnet substrates with faster deposition rates and high reliability,” Appl. Phys. Lett.87(12), 121111 (2005). [CrossRef]
  10. Y.-Q. Li, M. Cherif, J. Huang, W. Liu, and Q. Chen, “Metalorganic chemical vapor deposition of magneto-optical Ce:YIG thin films,” MRS Proceedings517, 449 (1998). [CrossRef]
  11. M. C. Sekhar, J.-Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett.94(18), 181916 (2009). [CrossRef]
  12. M. Sekhar, M. R. Singh, S. Basu, and S. Pinnepalli, “Giant Faraday rotation in BixCe3-xFe5O12 epitaxial garnet films,” Opt. Express20(9), 9624–9639 (2012). [CrossRef] [PubMed]
  13. M.-C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express19(12), 11740–11745 (2011). [CrossRef] [PubMed]
  14. P. Pintus, F. Di Pasquale, and J. E. Bowers, “Design of TE ring isolators for ultra low loss Si3N4 waveguides based on the finite element method,” Opt. Lett.36, 4599–4601 (2011). [CrossRef] [PubMed]
  15. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R.-G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express19(4), 3163–3174 (2011). [CrossRef] [PubMed]
  16. L. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media. (Pergamon, 1960).
  17. H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, P. Hertel, and A. F. Popkov, “Applications of magneto-optical waveguides in integrated optics: review,” J. Opt. Soc. Am. B22, 240–253 (2005). [CrossRef]
  18. O. Zhuromskyy, H. Dötsch, M. Lohmeyer, L. Wilkens, and P. Hertel, “Magnetooptical waveguides with polarization-independent nonreciprocal phaseshift,” J. Lightwave Technol.19(2), 214–221 (2001). [CrossRef]
  19. M. Gomi, H. Furuyama, and M. Abe, “Strong magneto-optical enhancement in highly Ce-substituted iron garnet films prepared by sputtering,” J. Appl. Phys.70(11), 7065 (1991). [CrossRef]
  20. G. J. Gabriel and M. E. Brodwin, “The solution of guided waves in inhomogeneous anisotropic media by perturbation and variational method,” IEEE Trans. Microw. Theory Tech.13(3), 364–370 (1965). [CrossRef]
  21. O. Zhuromskyy, M. Lohmeyer, N. Bahlmann, H. Dötsch, P. Hertel, and A. F. Popkov, “Analysis of polarization-independent Mach-Zehnder-type integrated optical isolator,” J. Lightwave Technol.17(7), 1200–1205 (1999). [CrossRef]
  22. A. Konrad, “High-order triangular finite elements for electromagnetic waves in anisotropic media,” IEEE Trans. Microw. Theory Tech.25(5), 353–360 (1977). [CrossRef]
  23. J. Jin, The Finite Element Method in Electromagnetics, second edition. (Wiley, 2002).
  24. F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett.104(3), 033902 (2010). [CrossRef] [PubMed]
  25. B. E. Little, J.-P. Laine, and S. T. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett.22(1), 4–6 (1997). [CrossRef] [PubMed]
  26. F. Morichetti, A. Canciamilla, M. Martinelli, A. Samarelli, R. M. De La Rue, M. Sorel, and A. Melloni, “Coherent backscattering in optical microring resonators,” Appl. Phys. Lett.96(8), 081112 (2010). [CrossRef]
  27. J. Capmany, P. Muñoz, J. D. Domenech, and M. A. Muriel, “Apodized coupled resonator waveguides,” Opt. Express15(16), 10196–10206 (2007). [CrossRef] [PubMed]
  28. D.-X. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. Delâge, S. Janz, P. Cheben, J. H. Schmid, and B. Lamontagne, “High bandwidth SOI photonic wire ring resonators using MMI couplers,” Opt. Express15(6), 3149–3155 (2007). [CrossRef] [PubMed]
  29. US Patent Application US 2012/0002914 A1, Inventors: H. Kroemer, J. E. Bowers, and M.-C. Tien, Pub. Date: 5th January 2012.
  30. T. Sekijima, H. Itoh, T. Fujii, K. Wakino, and M. Okada, “Influence of growth atmosphere on solubility limit of Ce3+ ions in Ce-substituted fibrous yttrium iron garnet single crystals,” J. Cryst. Growth229(1-4), 409–414 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited