OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 5053–5062

Reducing physical appearance of electromagnetic sources

Paul-Henri Tichit, Shah Nawaz Burokur, and André de Lustrac  »View Author Affiliations

Optics Express, Vol. 21, Issue 4, pp. 5053-5062 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2262 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose to use the concept of transformation optics for the design of novel radiating devices. By applying transformations that compress space, and then that match it to the surrounding environment, we show how the electromagnetic appearance of radiating elements can be tailored at will. Our efficient approach allows one to realize a large aperture emission from a small aperture one. We describe transformation of the metric space and the calculation of the material parameters. Full wave simulations are performed to validate the proposed approach on different space compression shapes, factors and impedance matching. The idea paves the way to interesting applications in various domains in microwave and optical regimes, but also in acoustics.

© 2013 OSA

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(260.2110) Physical optics : Electromagnetic optics
(260.2065) Physical optics : Effective medium theory
(160.3918) Materials : Metamaterials
(260.2710) Physical optics : Inhomogeneous optical media

ToC Category:
Physical Optics

Original Manuscript: December 27, 2012
Revised Manuscript: February 8, 2013
Manuscript Accepted: February 11, 2013
Published: February 21, 2013

Paul-Henri Tichit, Shah Nawaz Burokur, and André de Lustrac, "Reducing physical appearance of electromagnetic sources," Opt. Express 21, 5053-5062 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys. Condens. Matter15(37), 6345–6364 (2003). [CrossRef]
  2. S. Guenneau, B. Gralak, and J. B. Pendry, “Perfect corner reflector,” Opt. Lett.30(10), 1204–1206 (2005). [CrossRef] [PubMed]
  3. U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006). [CrossRef] [PubMed]
  4. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  5. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express14(21), 9794–9804 (2006). [CrossRef] [PubMed]
  6. U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys.8(10), 247 (2006). [CrossRef]
  7. R. A. Crudo and J. G. O’Brien, “Metric approach to transformation optics,” Phys. Rev. A80(3), 033824 (2009). [CrossRef]
  8. U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt.53, 69–152 (2009). [CrossRef]
  9. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006). [CrossRef] [PubMed]
  10. F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, “Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect,” Opt. Lett.32(9), 1069–1071 (2007). [CrossRef] [PubMed]
  11. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostruct.: Fundam. Appl.6(1), 87–95 (2008). [CrossRef]
  12. H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, “Design and experimental realization of a broadband transformation media field rotator at microwave frequencies,” Phys. Rev. Lett.102(18), 183903 (2009). [CrossRef] [PubMed]
  13. D.-H. Kwon and D. H. Werner, “Transformation optical designs for wave collimators, flat lenses and right-angle bends,” New J. Phys.10(11), 115023 (2008). [CrossRef]
  14. M. Tsang and D. Psaltis, “Magnifying perfect lens and superlens design by coordinate transformation,” Phys. Rev. B77(3), 035122 (2008). [CrossRef]
  15. N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater.9(2), 129–132 (2010). [CrossRef] [PubMed]
  16. D. A. Roberts, N. Kundtz, and D. R. Smith, “Optical lens compression via transformation optics,” Opt. Express17(19), 16535–16542 (2009). [CrossRef] [PubMed]
  17. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett.99(18), 183901 (2007). [CrossRef] [PubMed]
  18. A. Nicolet, F. Zolla, and S. Guenneau, “A finite element modelling for twisted electromagnetic waveguides,” Eur. J. Phys. Appl. Phys.28(2), 153–157 (2004). [CrossRef]
  19. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett.100(6), 063903 (2008). [CrossRef] [PubMed]
  20. M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express16(15), 11555–11567 (2008). [CrossRef] [PubMed]
  21. J. Huangfu, S. Xi, F. Kong, J. Zhang, H. Chen, D. Wang, B.-I. Wu, L. Ran, and J. A. Kong, “Application of coordinate transformation in bent waveguide,” J. Appl. Phys.104(1), 014502 (2008). [CrossRef]
  22. D. A. Roberts, M. Rahm, J. B. Pendry, and D. R. Smith, “Transformation-optical design of sharp waveguide bends and corners,” Appl. Phys. Lett.93(25), 251111 (2008). [CrossRef]
  23. P.-H. Tichit, S. N. Burokur, and A. de Lustrac, “Waveguide taper engineering using coordinate transformation technology,” Opt. Express18(2), 767–772 (2010). [CrossRef] [PubMed]
  24. V. Ginis, P. Tassin, C. M. Soukoulis, and I. Veretennicoff, “Confining light in deep subwavelength electromagnetic cavities,” Phys. Rev. B82(11), 113102 (2010). [CrossRef]
  25. V. Ginis, P. Tassin, J. Danckaert, C. M. Soukoulis, and I. Veretennicoff, “Creating electromagnetic cavities using transformation optics,” New J. Phys.14(3), 033007 (2012). [CrossRef]
  26. Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett.102(25), 253902 (2009). [CrossRef] [PubMed]
  27. W. H. Wee and J. B. Pendry, “Shrinking optical devices,” New J. Phys.11(7), 073033 (2009). [CrossRef]
  28. W. Lu, Z. Lin, H. Chen, and C. T. Chan, “Transformation media based super focusing antenna,” J. Phys. D Appl. Phys.42(21), 212002 (2009). [CrossRef]
  29. Y. Luo, J. Zhang, L. Ran, H. Chen, and J. A. Kong, “Controlling the emission of electromagnetic source,” PIERS Online4(7), 795–800 (2008). [CrossRef]
  30. J. Allen, N. Kundtz, D. A. Roberts, S. A. Cummer, and D. R. Smith, “Electromagnetic source transformations using superellipse equations,” Appl. Phys. Lett.94(19), 194101 (2009). [CrossRef]
  31. B. I. Popa, J. Allen, and S. A. Cummer, “Conformal array design with transformation electromagnetics,” Appl. Phys. Lett.94(24), 244102 (2009). [CrossRef]
  32. P.-H. Tichit, S. N. Burokur, D. Germain, and A. de Lustrac, “Design and experimental demonstration of a high-directive emission with transformation optics,” Phys. Rev. B83(15), 155108 (2011). [CrossRef]
  33. P.-H. Tichit, S. N. Burokur, D. Germain, and A. de Lustrac, “Coordinate transformation based ultra-directive emission,” Electron. Lett.47(10), 580–582 (2011). [CrossRef]
  34. Z. H. Jiang, M. D. Gregory, and D. H. Werner, “Experimental demonstration of a broadband transformation optics lens for highly directive multibeam emission,” Phys. Rev. B84(16), 165111 (2011). [CrossRef]
  35. P.-H. Tichit, S. N. Burokur, and A. de Lustrac, “Transformation media producing quasi-perfect isotropic emission,” Opt. Express19(21), 20551–20556 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited