OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 5117–5129

Performance of Maximum Likelihood estimation of Mueller matrices taking into account physical realizability and Gaussian or Poisson noise statistics

Haofeng Hu, Razvigor Ossikovski, and François Goudail  »View Author Affiliations


Optics Express, Vol. 21, Issue 4, pp. 5117-5129 (2013)
http://dx.doi.org/10.1364/OE.21.005117


View Full Text Article

Enhanced HTML    Acrobat PDF (777 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We address constrained estimation of the Mueller matrices from noisy measurements, taking into account the physical realizability. Physical realizability is enforced based on the positive semi-definite Hermitian coherency matrix, and the statistics of the noise is taken into account by employing Maximum Likelihood (ML) method. We consider two types of noise sources frequently encountered in optical imaging systems: additive Gaussian noise and Poisson shot noise. In both cases, we demonstrate reduction of estimation error by enforcing the physical realizability constraint, and superiority of the ML constrained solutions compared to empirically constrained ones. The ML constrained estimation method proposed in this paper provides a justified and effective way to exploit experimental measurements of Mueller matrices.

© 2013 OSA

OCIS Codes
(030.4280) Coherence and statistical optics : Noise in imaging systems
(260.5430) Physical optics : Polarization

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: November 21, 2012
Revised Manuscript: January 29, 2013
Manuscript Accepted: February 8, 2013
Published: February 22, 2013

Citation
Haofeng Hu, Razvigor Ossikovski, and François Goudail, "Performance of Maximum Likelihood estimation of Mueller matrices taking into account physical realizability and Gaussian or Poisson noise statistics," Opt. Express 21, 5117-5129 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-4-5117


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. E. Solomon, “Polarization imaging,” Appl. Opt.20, 1537–1544 (1981). [CrossRef] [PubMed]
  2. J. S. Tyo, M. P. Rowe, E. N. Pugh, and N. Engheta, “Target detection in optical scattering media by polarization-difference imaging,” Appl. Opt.35, 1855–1870 (1996). [CrossRef] [PubMed]
  3. S. Breugnot and P. Clémenceau, “Modeling and performances of a polarization active imager at λ = 806 nm,” Opt. Eng.39, 2681–2688 (2000). [CrossRef]
  4. S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt.7, 329–340 (2002). [CrossRef] [PubMed]
  5. Y. Y. Schechner, S. G. Narasimhan, and S. K. Nayar, “Polarization-based vision through haze,” Appl. Opt.42, 511–525 (2003). [CrossRef] [PubMed]
  6. J. M. Bueno, J. Hunter, C. Cookson, M. Kisilak, and M. Campbell, “Improved scanning laser fundus imaging using polarimetry,” J. Opt. Soc. Am. A24, 1337–1348 (2007). [CrossRef]
  7. A. Pierangelo, B. Abdelali, M.-R. Antonelli, T. Novikova, P. Validire, B. Gayet, and A. De Martino, “Ex-vivo characterization of human colon cancer by mueller polarimetric imaging,” Opt. Express19, 1582–1593 (2011). [CrossRef] [PubMed]
  8. J. Cariou, B. L. Jeune, J. Lotrian, and Y. Guern, “Polarization effects of seawater and underwater targets,” Appl. Opt.29, 1689–1695 (1990). [CrossRef] [PubMed]
  9. B. J. Howell, “Measurement of the polarization effects of an instrument using partially polarized light,” Appl. Opt.18, 809–812 (1979). [CrossRef] [PubMed]
  10. D. G. M. Anderson and R. Barakat, “Necessary and sufficient conditions for a mueller matrix to be derivable from a jones matrix,” J. Opt. Soc. Am. A11, 2305–2319 (1994). [CrossRef]
  11. R. S. Cloude and E. Pottier, “Concept of polarization entropy in optical scattering,” Opt. Eng.34, 1599–1610 (1995). [CrossRef]
  12. A. Aiello, G. Puentes, D. Voigt, and J. P. Woerdman, “Maximum-likelihood estimation of mueller matrices,” Opt. Lett.31, 817–819 (2006). [CrossRef] [PubMed]
  13. J. Zallat, C. Heinrich, and M. Petremand, “A bayesian approach for polarimetric data reduction: the mueller imaging case,” Opt. Express16, 7119–7133 (2008). [CrossRef] [PubMed]
  14. J. E. Ahmad and Y. Takakura, “Estimation of physically realizable mueller matrices from experimentsusing global constrained optimization,” Opt. Express16, 14274–14287 (2008). [CrossRef] [PubMed]
  15. S. M. Kay, Fundamentals of statistical signal processing - Volume I : Estimation Theory (Prentice-Hall, Englewood Cliffs, 1993).
  16. R. Ossikovski, “Retrieval of a nondepolarizing estimate from an experimental mueller matrix through virtual experiment,” Opt. Lett.37, 578–580 (2012). [CrossRef] [PubMed]
  17. H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, New York, 2004).
  18. A. Ambirajan and D. C. Look, “Optimum angles for a polarimeter: part ii,” Opt. Eng.34, 1656–1658 (1995). [CrossRef]
  19. D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete stokes polarimeter,” Opt. Lett.25, 802–804 (2000). [CrossRef]
  20. J. S. Tyo, “Noise equalization in stokes parameter images obtained by use of variable-retardance polarimeters,” Opt. Lett.25, 1198–1200 (2000). [CrossRef]
  21. F. Goudail, “Noise minimization and equalization for stokes polarimeters in the presence of signal-dependent poisson shot noise,” Opt. Lett.34, 647–649 (2009). [CrossRef] [PubMed]
  22. G. Anna and F. Goudail, “Optimal mueller matrix estimation in the presence of poisson shot noise,” Opt. Express20, 21331–21340 (2012). [CrossRef] [PubMed]
  23. Q. Y. Duan, V. K. Gupta, and S. Sorooshian, “A shuffled complex evolution approach for effective and efficient global minimization,” J. Optim. Theory Appl.76, 501–521 (1993). [CrossRef]
  24. J. J. Gil and E. Bernabeu, “Depolarization and polarization indices of an optical system,” Optica Acta: International Journal of Optics33, 185–189 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited