OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 5149–5163

Electromagnetically induced transparency and ultraslow optical solitons in a coherent atomic gas filled in a slot waveguide

Jin Xu and Guoxiang Huang  »View Author Affiliations

Optics Express, Vol. 21, Issue 4, pp. 5149-5163 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1556 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the electromagnetically induced transparency (EIT) and nonlinear pulse propagation in a Λ-type three-level atomic gas filled in a slot waveguide, in which electric field is strongly confined inside the slot of the waveguide due to the discontinuity of dielectric constant. We find that EIT effect can be greatly enhanced due to the reduction of optical-field mode volume contributed by waveguide geometry. Comparing with the atomic gases in free space, the EIT transparency window in the slot waveguide system can be much wider and deeper, and the Kerr nonlinearity of probe laser field can be much stronger. We also prove that using slot waveguide ultraslow optical solitons can be produced efficiently with extremely low generation power.

© 2013 OSA

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(130.2790) Integrated optics : Guided waves
(270.5530) Quantum optics : Pulse propagation and temporal solitons

ToC Category:
Atomic and Molecular Physics

Original Manuscript: November 30, 2012
Revised Manuscript: January 13, 2013
Manuscript Accepted: January 15, 2013
Published: February 22, 2013

Jin Xu and Guoxiang Huang, "Electromagnetically induced transparency and ultraslow optical solitons in a coherent atomic gas filled in a slot waveguide," Opt. Express 21, 5149-5163 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys.77, 633–673 (2005). [CrossRef]
  2. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature.397, 594–598 (1999). [CrossRef]
  3. M. M. Kash, V.A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M.O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett.82, 5229–5232 (1999). [CrossRef]
  4. A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photon.3, 706–714 (2009). [CrossRef]
  5. H. Zhang, X.-M. Jin, J. Yang, H.-N. Dai, S.-J. Yang, T.-M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G.-S. Pan, Z.-S. Yuan, Y. Deng, Z.-B. Chen, X.-H. Bao, S. Chen, B. Zhao, and J.-W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics5, 628–632 (2011). [CrossRef]
  6. H. N. Dai, H. Zhang, S.-J. Yang, T.-M. Zhao, J. Rui, Y.-J. Deng, L. Li, N.-L. Liu, S. Chen, X.-H. Bao, X.-M. Jin, B. Zhao, and J.-W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett.108, 210501 (2012). [CrossRef] [PubMed]
  7. C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett.90, 197902 (2003). [CrossRef] [PubMed]
  8. C. Hang, Y. Li, L. Ma, and G. Huang, “Three-way entanglement and three-qubit phase gate based on a coherent six-level atomic system,” Phys. Rev. A74, 012319 (2006). [CrossRef]
  9. Y. Wu and L. Deng, “Ultraslow optical solitons in a cold four-state medium,” Phys. Rev. Lett.93, 143904 (2004). [CrossRef] [PubMed]
  10. G. Huang, L. Deng, and M. G. Payne, “Dynamics of ultraslow optical solitons in a cold three-state atomic system,” Phys. Rev. E.72, 016617 (2005). [CrossRef]
  11. S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljacic, S. Jacobs, J. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express9, 748–779 (2001). [CrossRef] [PubMed]
  12. S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett.94, 093902 (2005). [CrossRef] [PubMed]
  13. S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, and A. L. Gaeta, “Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber,” Phys. Rev. Lett.97, 023603 (2006). [CrossRef] [PubMed]
  14. P. S. Light, F. Benabid, F. Couny, M. Maric, and A. N. Luiten, “Electromagnetically induced transparency in Rb-filled coated hollow-core photonic crystal fiber,” Opt. Lett.32, 1323–1325 (2007). [CrossRef] [PubMed]
  15. F. Benabid, P. Light, F. Couny, and P. Russell, “Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF,” Opt. Express13, 5694–5703 (2005). [CrossRef] [PubMed]
  16. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009). [CrossRef] [PubMed]
  17. A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A81, 053825 (2010). [CrossRef]
  18. F. L. Kien and K. Hakuta, “Slowing down of a guided light field along a nanofiber in a cold atomic gas,” Phys. Rev. A.79, 013818 (2009). [CrossRef]
  19. V. R. Almeida, Q. Xu, C. A. Barrios, R. R. Panepucci, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett.29, 1209–1211 (2004). [CrossRef] [PubMed]
  20. Q. Xu, V. R. Almeida, R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett.29, 1626–1628 (2004). [CrossRef] [PubMed]
  21. M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. L. Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett.89, 241114 (2006). [CrossRef]
  22. K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, F. de Fornel, and E. Hadji, “An air-slotted nanoresonator relying on coupled high Q small V Fabry-Perot nanocavities,” Appl. Phys. Lett.94, 251111 (2009). [CrossRef]
  23. T. Yamamoto, M. Notomi, H. Taniyama, E. Kuramochi, Y. Yoshikawa, Y. Torii, and T. Kuga, “Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab,” Opt. Express16, 13809–13817 (2008). [CrossRef] [PubMed]
  24. Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express18, 23844–23856 (2010). [CrossRef] [PubMed]
  25. M. P. Hiscocks, C. Su, B. C. Gibson, A. D. Greentree, L. C. L. Hollenberg, and F. Ladouceur, “Slot-waveguide cavities for optical quantum information applications,” Opt. Express17, 7295–7303 (2009). [CrossRef] [PubMed]
  26. H. Ryu, J. Kim, Y. M. Jhon, S. Lee, and N. Park, “Effect of index contrasts in the wide spectral-range control of slot waveguide dispersion,” Opt. Express20, 13189–13194 (2012) [CrossRef] [PubMed]
  27. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express15, 5976–5990 (2007). [CrossRef] [PubMed]
  28. P. Muellner, M. Wellenzohn, and R. Hainberger, “Nonlinearity of optimized silicon photonic slot waveguides,” Opt. Express17, 9282–9287 (2009). [CrossRef] [PubMed]
  29. Q. Quan, I. Bulu, and M. Lončar, “Broadband waveguide QED system on a chip,” Phys. Rev. A.80, 011810(R) (2009). [CrossRef]
  30. L. Zhang, Y. Yue, Y. X. Li, J. Wang, R. G. Beausoleil, and A. E. Willner, “Flat and low dispersion in highly nonlinear slot waveguides,” Opt. Express18, 13187–13193 (2010). [CrossRef] [PubMed]
  31. Y. Yue, L. Zhang, J. Wang, R. G. Beausoleil, and A. E. Willner, “Highly efficient nonlinearity reduction in silicon-on-insulator waveguides using vertical slots,” Opt. Express18, 22061–22066 (2010). [CrossRef] [PubMed]
  32. R. Guo, B. Wang, X. Wang, L. Wang, L. Jiang, and Z. Zhou, “Optical amplification in Er/Yb silicate slot waveguide,” Opt. Lett.37, 1427–1429 (2012). [CrossRef] [PubMed]
  33. H. Lee, Y. Rostovtsev, C. J. Bednar, and A. Javan, “From laser-induced line narrowing to electromagnetically induced transparency: closed system analysis,” Appl. Phys. B76, 33 (2003). [CrossRef]
  34. L. Li and G. Huang, “Linear and nonlinear light propagations in a Doppler-broadened medium via electromagnetically induced transparency,” Phys. Rev. A82, 023809 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited