OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5226–5231

Loss analysis for a two wire optical waveguide for chip-to-chip communication

Jonathan Dickason and K.W. Goossen  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 5226-5231 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1229 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an optical interconnect system for chip-to-chip communication using gold bond wires as a two wire waveguide. Here the loss of such a waveguide is determined for near-IR wavelengths, for different wire sizes and configurations, and show that we can achieve transmission loss coefficients less than 0.4 mm−1 (1.7 dB/mm) making chip-to-chip optical communication possible using two-wire transmission lines made of standard gold bond wires. Such an optical waveguide scheme would greatly simplify inter-chip optical communication compared with existing waveguide concepts.

© 2013 OSA

OCIS Codes
(200.4650) Optics in computing : Optical interconnects
(230.7370) Optical devices : Waveguides

ToC Category:
Optics in Computing

Original Manuscript: October 31, 2012
Revised Manuscript: February 15, 2013
Manuscript Accepted: February 17, 2013
Published: February 25, 2013

Jonathan Dickason and K.W. Goossen, "Loss analysis for a two wire optical waveguide for chip-to-chip communication," Opt. Express 21, 5226-5231 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. B. Miller and H. M. Ozaktas, “Limit to the bit-rate capacity of electrical interconnects from the aspect ratio of the system architecture,” J. Parallel Distrib. Comput.41(1), 42–52 (1997). [CrossRef]
  2. J. W. Goodman, F. J. Leonberger, S. Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE72(7), 850–866 (1984).
  3. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE88(6), 728–749 (2000). [CrossRef]
  4. D. A. B. Miller, “Physical reasons for optical interconnection,” J. Optoelectron.11, 155–168 (1997).
  5. L. Schares, T. J. Watson, J. A. Kash, F. E. Doany, C. L. Schow, C. Schuster, D. M. Kuchta, P. K. Pepeljugoski, J. M. Trewhella, C. W. Baks, R. A. John, L. Shan, Y. H. Kwark, R. A. Budd, P. Chiniwalla, F. R. Libsch, J. Rosner, C. K. Tsang, C. S. Patel, J. D. Schaub, R. Dangel, F. Horst, B. J. Offrein, D. Kucharski, D. Guckenberger, S. Hedge, H. Nyikal, C. K. Lin, A. Tandon, G. R. Trott, M. Nystrom, D. P. Bour, M. R. T. Tan, and D. W. Dolfi, “Terabus: terabit/second-class card-level optical interconnect technologies,” IEEE J. Sel. Top. Quantum Electron.12(5), 1032–1044 (2006).
  6. C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro26(2), 58–66 (2006). [CrossRef]
  7. B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, “A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13-µm CMOS SOI technology,” IEEE J. Solid-State Circuits41, 2945–2955 (2006). [CrossRef]
  8. J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M. H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express16(17), 13133–13138 (2008). [CrossRef] [PubMed]
  9. H. Pahlevaninezhad, T. E. Darcie, and B. Heshmat, “Two-wire waveguide for terahertz,” Opt. Express18(7), 7415–7420 (2010). [CrossRef] [PubMed]
  10. T. T. Wu, “Theory of the dipole antenna and the two wire transmission line,” J. Math. Phys.2(4), 550 (1961). [CrossRef]
  11. M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett.95(23), 233506 (2009). [CrossRef]
  12. J. D. Jackson, Classical electrodynamics, 3rd ed. (John Wiley & Sons, 1999), pp. 352–356.
  13. D. W. Lynch and W. R. Hunter, “Metals,” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited