OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5247–5254

Stroboscopic scanning white light interferometry at 2.7 MHz with 1.6 µm coherence length using a non-phosphor LED source

Ville Heikkinen, Ivan Kassamakov, Tor Paulin, Anton Nolvi, and Edward Hæggström  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 5247-5254 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1292 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Stroboscopic scanning white light interferometry (SSWLI) allows precise three dimensional (3D) measurements of oscillating samples. Commercial SSWLI devices feature limited pulsing frequency. To address this issue we built a 400-620 nm wideband 150 mW light source whose 1.6 µm wide interferogram is without side peaks. The source combines a non-phosphor white LED with a cyan LED. We measured a calibration artifact with 10 nm precision and obtained 40 nm precision when measuring the 3D profile of a capacitive micromachined ultrasonic transducer membrane operating at 2.72 MHz. This source is compatible with solid state technology.

© 2013 OSA

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3940) Instrumentation, measurement, and metrology : Metrology
(110.3175) Imaging systems : Interferometric imaging

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: November 16, 2012
Revised Manuscript: January 10, 2013
Manuscript Accepted: January 10, 2013
Published: February 25, 2013

Ville Heikkinen, Ivan Kassamakov, Tor Paulin, Anton Nolvi, and Edward Hæggström, "Stroboscopic scanning white light interferometry at 2.7 MHz with 1.6 µm coherence length using a non-phosphor LED source," Opt. Express 21, 5247-5254 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Chen, Y. Huang, X. Nguyen, J. Chen, and C. Chang, “Dynamic out-of-plane profilometry for nano-scale full-field characterization of MEMS using stroboscopic interferometry with novel signal deconvolution algorithm,” Opt. Lasers Eng.47(2), 237–251 (2009). [CrossRef]
  2. S. Petitgrand, R. Yahiaoui, K. Danaie, A. Bosseboeuf, and J.-P. Gilles, “3D measurement of micromechanical devices vibration mode shapes with a stroboscopic interferometric microscope,” Opt. Lasers Eng.36(2), 77–101 (2001). [CrossRef]
  3. L. A. J. Davis, D. R. Billson, D. A. Hutchins, and R. A. Noble, “Visualizing acoustic displacements of capacitive micromachined transducers using an interferometric microscope,” Acoust. Res. Lett. Online6(2), 75–79 (2005). [CrossRef]
  4. S. H. Wong, M. Kupnik, X. Zhuang, D.-S. Lin, K. Butts-Pauly, and B. T. Khuri-Yakub, “Evaluation of wafer bonded CMUTs with rectangular membranes featuring high fill factor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control55(9), 2053–2065 (2008). [CrossRef] [PubMed]
  5. L. Chen, Y. Huang, and K. Fan, “A Dynamic 3-D surface profilometer with nanoscale measurement resolution and MHz bandwidth for MEMS characterization,” IEEE/ASME Trans. Mechatron.12(3), 299–307 (2007). [CrossRef]
  6. W. K. Chong, X. Li, and S. Wijesoma, “Effects of phosphor-based LEDs on vertical scanning interferometry,” Opt. Lett.35(17), 2946–2948 (2010). [CrossRef] [PubMed]
  7. H. Tanaka, Y. Umeda, and O. Takyu, “High-speed LED driver for visible light communications with drawing-out of remaining carrier,” Proc IEEE Radio Wirel Symp, (2011), pp. 295 - 298.
  8. D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. J. Oh, H. L. Minh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett.21(15), 1063–1065 (2009). [CrossRef]
  9. C. F. Huang, C. F. Lu, T. Y. Tang, J. J. Huang, and C. C. Yang, “Phosphor-free white-light light-emitting diode of weakly carrier-density-dependent spectrum with prestrained growth of InGaN/GaN quantum wells,” Appl. Phys. Lett.90(15), 151122 (2007). [CrossRef]
  10. H. Fang, L. W. Sang, L. B. Zhao, S. L. Qi, Y. Z. Zhang, X. L. Yang, Z. J. Yang, and G. Y. Zhang, “Luminescent properties in the strain adjusted phosphor-free GaN based white light-emitting diode,” Appl. Phys. Lett.93(26), 261117 (2008). [CrossRef]
  11. D.-S. Wan, C. Farrell, and E. L. Novak, “Variable-wavelength illumination system for interferometry,“ U.S. Patent 7,654,685 B2 (Feb. 2, 2008).
  12. C.-F. Lu, C.-F. Huang, Y.-S. Chen, W.-Y. Shiao, C.-Y. Chen, Y.-C. Lu, and C.-C. Yang, “Phosphor-free monolithic white- light LED,” IEEE J. Sel. Top. Quantum Electron.15(4), 1210–1217 (2009). [CrossRef]
  13. P. de Groot and X. Colonna de Lega, “Signal modeling for low-coherence height-scanning interference microscopy,” Appl. Opt.43(25), 4821–4830 (2004). [CrossRef] [PubMed]
  14. V. Heikkinen, K. Hanhijärvi, J. Aaltonen, H. Räikkönen, B. Wälchli, T. Paulin, I. Kassamakov, K. Grigoras, S. Franssila, and E. Hæggström, “Hybrid light source for scanning white light interferometry-based MEMS quality control,” Proc. SPIE8082, 80822O, 80822O-8 (2011). [CrossRef]
  15. L. Sainiemi, K. Grigoras, I. Kassamakov, K. Hanhijärvi, J. Aaltonen, J. Fan, V. Saarela, E. Hæggström, and S. Franssila, “Fabrication of thermal microbridge actuators and characterization of their electrical and mechanical responses,” Sens. Actuators A Phys.149(2), 305–314 (2009). [CrossRef]
  16. I. Kassamakov, K. Hanhijärvi, I. Abbadi, J. Aaltonen, H. Ludvigsen, and E. Haeggström, “Scanning white-light interferometry with a supercontinuum source,” Opt. Lett.34(10), 1582–1584 (2009). [CrossRef] [PubMed]
  17. K. Hanhijärvi, J. Aaltonen, I. Kassamakov, K. Grigoras, L. Sainiemi, S. Franssila, and E. Hæggström, “Effect of LED spectral shift on vertical resolution in stroboscopic white light interferometry,” Proc. SPIE7003, 70031S (2008).
  18. Y. Huang, X. Zhuang, E. O. Haeggstrom, A. S. Ergun, C.-H. Cheng, and B. T. Khuri-Yakub, “Capacitive micromachined ultrasonic transducers with piston-shaped membranes: fabrication and experimental characterization,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control56(1), 136–145 (2009). [CrossRef] [PubMed]
  19. A. L. Hartzell, M. G. da Silva, and H. R. Shea, MEMS Reliability (MEMS Reference Shelf) (Springer, 2010), Chap. 6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited