OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5287–5299

Length sensing and control of a Michelson interferometer with power recycling and twin signal recycling cavities

Christian Gräf, André Thüring, Henning Vahlbruch, Karsten Danzmann, and Roman Schnabel  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 5287-5299 (2013)
http://dx.doi.org/10.1364/OE.21.005287


View Full Text Article

Enhanced HTML    Acrobat PDF (3034 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The techniques of power recycling and signal recycling have proven as key concepts to increase the sensitivity of large-scale gravitational wave detectors by independent resonant enhancement of light power and signal sidebands within the interferometer. Developing the latter concept further, twin signal recycling was proposed as an alternative to conventional detuned signal recycling. Twin signal recycling features the narrow-band sensitivity gain of conventional detuned signal recycling but furthermore facilitates the injection of squeezed states of light, increases the detector sensitivity over a wide frequency band and requires a less complex detection scheme for optimal signal readout. These benefits come at the expense of an additional recycling mirror, thus increasing the number of degrees of freedom in the interferometer which need to be controlled.In this article we describe the development of a length sensing and control scheme and its successful application to a tabletop-scale power recycled Michelson interferometer with twin signal recycling. We were able to lock the interferometer in all relevant longitudinal degrees of freedom and thus laid the foundation for further investigations of this interferometer configuration to evaluate its viability for the application in gravitational wave detectors.

© 2013 OSA

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(230.4555) Optical devices : Coupled resonators

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: November 30, 2012
Revised Manuscript: January 12, 2013
Manuscript Accepted: January 12, 2013
Published: February 25, 2013

Citation
Christian Gräf, André Thüring, Henning Vahlbruch, Karsten Danzmann, and Roman Schnabel, "Length sensing and control of a Michelson interferometer with power recycling and twin signal recycling cavities," Opt. Express 21, 5287-5299 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-5287


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Willke and for the GEO collaboration, “The GEO-HF project,” Class. Quantum Grav.23, S207–S214 (2006). [CrossRef]
  2. G. M. Harry and for the LIGO scientific collaboration, “Advanced LIGO: the next generation of gravitational wave detectors,” Class. Quantum Grav.27, 084006 (2010). [CrossRef]
  3. The Virgo collaboration, “Status of the Virgo project,” Class. Quantum Grav.28, 114002 (2011).
  4. K. Somiya and for the KAGRA collaboration, “Detector configuration of KAGRA – the Japanese cryogenic gravitational-wave detector,” Class. Quantum Grav.29, 124007 (2012). [CrossRef]
  5. B. J. Meers, “Recycling in laser-interferometric gravitational-wave detectors,” Phys. Rev. D38, 2317–2326 (1988). [CrossRef]
  6. S. Hild, H. Grote, M. Hewitson, H. Lück, J. R. Smith, K. A. Strain, B. Willke, and K. Danzmann, “Demonstration and comparison of tuned and detuned signal recycling in a large-scale gravitational wave detector,” Class. Quantum Grav.24, 1513–1523 (2007). [CrossRef]
  7. C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D23, 1693–1708 (1981). [CrossRef]
  8. R. Schnabel and for the LIGO Scientific Collaboration, “A gravitational wave observatory operating beyond the quantum shot-noise limit,” Nature Phys.7, 962–965 (2011). [CrossRef]
  9. The LIGO Scientific Collaboration, paper in preparation.
  10. J. Harms, Y. Chen, S. Chelkowski, A. Franzen, H. Vahlbruch, K. Danzmann, and R. Schnabel, “Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors,” Phys. Rev. D68, 042001 (2003). [CrossRef]
  11. H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P. Vyatchanin, “Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics,” Phys. Rev. D65, 022002 (2002). [CrossRef]
  12. H. Lück, C. Affeldt, J. Degallaix, A. Freise, H. Grote, M. Hewitson, S. Hild, J. Leong, M. Prijatelj, K. A. Strain, B. Willke, H. Wittel, and K. Danzmann, “The upgrade of GEO600,” J. Phys.: Conf. Ser.228, 012012 (2010). [CrossRef]
  13. The Virgo Collaboration, “Advanced Virgo technical design report”, VIR-0128A-12 (2012). https://tds.ego-gw.it/ql/?c=8940
  14. A. Thüring, R. Schnabel, H. Lück, and K. Danzmann, “Detuned twin signal recycling for ultra-high precision interferometers,” Opt. Lett.32, 985–987 (2007). [CrossRef] [PubMed]
  15. A. Thüring, Investigations of coupled and Kerr non-linear optical resonators PhD Thesis, (Leibniz Universität Hannover, 2009).
  16. A. Thüring, C. Gräf, H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Broadband squeezing of quantum noise in a Michelson interferometer with twin-signal-recycling,” Opt. Lett.34, 824–826 (2009). [CrossRef] [PubMed]
  17. H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Demonstration of a squeezed-light-enhanced power- and signal-recycled Michelson interferometer,” Phys. Rev. Lett.95, 211102 (2005). [CrossRef] [PubMed]
  18. A. Freise, G. Heinzel, H. Lück, R. Schilling, B. Willke, and K. Danzmann, “Frequency-domain interferometer simulation with higher-order spatial modes,” Class. Quantum Grav.21, S1067–S1074 (2004). [CrossRef]
  19. K. A. Strain, G. Müller, T. Delker, D. H. Reitze, D. B. Tanner, J. E. Mason, P. A. Willems, D. A. Shaddock, M. B. Gray, C. Mow-Lowry, and D. E. McClelland, “Sensing and control in dual-recycling laser interferometer gravitational-wave detectors,” Appl. Opt.42, 1244–1256 (2003). [CrossRef] [PubMed]
  20. M. W. Regehr, F. J. Raab, and S. E. Whitcomb, “Demonstration of a power-recycled Michelson interferometer with Fabry-Perot arms by frontal modulation,” Opt. Lett.20, 1507–1509 (1995). [CrossRef] [PubMed]
  21. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B31, 97–105 (1983). [CrossRef]
  22. J. Mizuno, Comparison of optical configurations for laser-interferometric gravitational-wave detectors PhD Thesis, (Universität Hannover, 1995).
  23. A. J. Mullavey, B. J. J. Slagmolen, J. Miller, M. Evans, P. Fritschel, D. Sigg, S. J. Waldman, D. A. Shaddock, and D. E. McClelland, “Arm-length stabilisation for interferometric gravitational-wave detectors using frequency-doubled auxiliary lasers,” Opt. Express20, 81–89 (2012). [CrossRef] [PubMed]
  24. D. A. Shaddock, “Digitally enhanced heterodyne interferometry,” Opt. Lett.32, 3355–3357 (2007). [CrossRef] [PubMed]
  25. M. Punturo and for the ET collaboration, “The Einstein Telescope: a third-generation gravitational wave observatory,” Class. Quantum Grav.27, 194002 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited