OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5309–5317

Experimental generation of multi-photon Fock states

Merlin Cooper, Laura J. Wright, Christoph Söller, and Brian J. Smith  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 5309-5317 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1995 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally demonstrate the generation of multi-photon Fock states with up to three photons in well-defined spatial-temporal modes synchronized with a classical clock. The states are characterized using quantum optical homodyne tomography to ensure mode selectivity. The three-photon Fock states are probabilistically generated by pulsed spontaneous parametric down conversion at a rate of one per second, enabling complete characterization in 12 hours.

© 2013 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5290) Quantum optics : Photon statistics
(270.5570) Quantum optics : Quantum detectors

ToC Category:
Quantum Optics

Original Manuscript: December 28, 2012
Revised Manuscript: February 7, 2013
Manuscript Accepted: February 7, 2013
Published: February 25, 2013

Merlin Cooper, Laura J. Wright, Christoph Söller, and Brian J. Smith, "Experimental generation of multi-photon Fock states," Opt. Express 21, 5309-5317 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. J. Holland and K. Burnett, “Interferometric detection of optical phase shifts at the Heisenberg limit,” Phys. Rev. Lett.71, 1355–1358 (1993). [CrossRef] [PubMed]
  2. K. Banaszek and P. L. Knight, “Quantum interference in three-photon down-conversion,” Phys. Rev. A55, 2368–2375 (1997). [CrossRef]
  3. J.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature403, 515–519 (2000). [CrossRef] [PubMed]
  4. M. S. Kim, W. Son, V. Bužek, and P. L. Knight, “Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement,” Phys. Rev. A65, 032323 (2002). [CrossRef]
  5. J. K. Asbóth, J. Calsamiglia, and H. Ritsch, “Computable measure of nonclassicality for light,” Phys. Rev. Lett.94, 173602 (2005). [CrossRef] [PubMed]
  6. K. Bencheikh, F. Gravier, J. Douady, A. Levenson, and B. Boulanger, “Triple photons: a challenge in nonlinear and quantum optics,” Comptes Rendus Physique8, 206–220 (2007). [CrossRef]
  7. E. Bimbard, N. Jain, A. MacRae, and A. I. Lvovsky, “Quantum-optical state engineering up to the two-photon level,” Nat. Photonics4, 243–247 (2010). [CrossRef]
  8. T. J. Bartley, G. Donati, J. B. Spring, X.-M. Jin, M. Barbieri, A. Datta, B. J. Smith, and I. A. Walmsley, “Multi-photon state engineering by heralded interference between single photons and coherent states,” Phys. Rev. A86, 043820 (2012). [CrossRef]
  9. P. van Loock, “Optical hybrid approaches to quantum information,” Laser Photon. Rev.5, 167–200 (2011). [CrossRef]
  10. A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett.87, 050402 (2001). [CrossRef] [PubMed]
  11. A. Zavatta, S. Viciani, and M. Bellini, “Tomographic reconstruction of the single-photon Fock state by high-frequency homodyne detection,” Phys. Rev. A70, 053821 (2004). [CrossRef]
  12. S. R. Huisman, N. Jain, S. A. Babichev, F. Vewinger, A. N. Zhang, S. H. Youn, and A. I. Lvovsky, “Instant single-photon fock state tomography,” Opt. Lett.34, 2739–2741 (2009). [CrossRef] [PubMed]
  13. A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Quantum homodyne tomography of a two-photon Fock state,” Phys. Rev. Lett.96, 213601 (2006). [CrossRef] [PubMed]
  14. A. Zavatta, V. Parigi, and M. Bellini, “Toward quantum frequency combs: boosting the generation of highly nonclassical light states by cavity-enhanced parametric down-conversion at high repetition rates,” Phys. Rev. A78, 033809 (2008). [CrossRef]
  15. K. J. Resch, J. S. Lundeen, and A. M. Steinberg, “Quantum state preparation and conditional coherence,” Phys. Rev. Lett.88, 113601 (2002). [CrossRef] [PubMed]
  16. A. I. Lvovsky and J. Mlynek, “Quantum-optical catalysis: generating nonclassical states of light by means of linear optics,” Phys. Rev. Lett.88, 250401 (2002). [CrossRef] [PubMed]
  17. A. M. Lance, H. Jeong, N. B. Grosse, T. Symul, T. C. Ralph, and P. K. Lam, “Quantum-state engineering with continuous-variable postselection,” Phys. Rev. A73, 041801 (2006). [CrossRef]
  18. A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and P. Grangier, “Generation of optical Schrödinger cats from photon number states,” Nature448, 784–786 (2007). [CrossRef] [PubMed]
  19. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601 (2008). [CrossRef] [PubMed]
  20. M. Cooper, C. Söller, and B. J. Smith, “High-stability time-domain balanced homodyne detector for ultrafast optical pulse applications,” arXiv :1112.0875 [quant-ph] (2011).
  21. D. Achilles, C. Silberhorn, C. Sliwa, K. Banaszek, and I. A. Walmsley, “Fiber-assisted detection with photon number resolution,” Opt. Lett.28, 2387–2389 (2003). [CrossRef] [PubMed]
  22. R. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics3, 696–705 (2009). [CrossRef]
  23. T. Aichele, A. Lvovsky, and S. Schiller, “Optical mode characterization of single photons prepared by means of conditional measurements on a biphoton state,” EPJ. D18, 237–245 (2002). [CrossRef]
  24. C. Kim, R.-D. Li, and P. Kumar, “Deamplification response of a traveling-wave phase-sensitive optical parametric amplifier,” Opt. Lett.19, 132–134 (1994). [CrossRef] [PubMed]
  25. Y.-H. Kim and W. P. Grice, “Measurement of the spectral properties of the two-photon state generated via type-II spontaneous parametric downconversion,” Opt. Lett.30, 908–910 (2005). [CrossRef] [PubMed]
  26. F. Grosshans and P. Grangier, “Effective quantum efficiency in the pulsed homodyne detection of a n-photon state,” EPJ. D14, 119–125 (2001). [CrossRef]
  27. A. I. Lvovsky, “Iterative maximum-likelihood reconstruction in quantum homodyne tomography,” J. Opt. B: Quantum Semiclass. Opt. 6, S556–S559 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited