OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5318–5331

The suitability of SiGe multiple quantum well modulators for short reach DWDM optical interconnects

Rohan D. Kekatpure and Anthony Lentine  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 5318-5331 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1120 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe calculations that address the suitability at using silicon-germanium multiple quantum well (MQW) modulators in dense wavelength division multiplexed (DWDM) short reach optical interconnects that vary over a significant temperature range. Our calculations indicate that there is a tradeoff between the number of channels, the temperature range and laser power required. Twenty to forty DWDM channels at 100 GHz and 50 GHz channel spacing is possible in DWDM links with a ∼ 12° temperature range with less than a 1 dB laser power penalty compared to the optimum single channel, single temperature case. The same number of channels can be operated over a wider 37° temperature range with laser power penalties of 3 dB. It shows that, even for DWDM systems, silicon-germanium modulators might provide an alternative to ring and disk resonant modulators without the need for stringent (≪ 1°C) temperature control.

© 2013 OSA

OCIS Codes
(200.4650) Optics in computing : Optical interconnects
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(130.4110) Integrated optics : Modulators

ToC Category:
Optics in Computing

Original Manuscript: January 3, 2013
Revised Manuscript: February 8, 2013
Manuscript Accepted: February 19, 2013
Published: February 25, 2013

Rohan D. Kekatpure and Anthony Lentine, "The suitability of SiGe multiple quantum well modulators for short reach DWDM optical interconnects," Opt. Express 21, 5318-5331 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987). [CrossRef]
  2. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005). [CrossRef] [PubMed]
  3. P. Dong, S. Liao, H. Liang, W. Qian, X. Wang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “High-speed and compact silicon modulator based on a racetrack resonator with a 1 V drive voltage,” Opt. Lett.35(19), 3246–3248 (2010). [CrossRef] [PubMed]
  4. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express19(22), 21,989–22,003 (2011). [CrossRef]
  5. A. Krishnamoorthy, “Focus Issue on Photonic Materials and Integration Architectures,” IEEE Photon. J.3(3), 564 –626 (2011). [CrossRef]
  6. W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express18(23), 23598–23607 (2010). [CrossRef] [PubMed]
  7. C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon Microring Modulator with Integrated Heater and Temperature Sensor for Thermal Control,” in Conference on Lasers and Electro-Optics CThJ3 (2010).
  8. E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated Wavelength Recovery for Microring Resonators,” in CLEO: Science and Innovations CM2M.1 (2012).
  9. K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Dynamic Stabilization of a Microring Modulator Under Thermal Perturbation,” in Optical Fiber Communication Conference OW4F.2 (2012).
  10. B. Guha, K. Preston, and M. Lipson, “Athermal silicon microring electro-optic modulator,” Opt. Lett.37(12), 2253–2255 (2012). [CrossRef] [PubMed]
  11. J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2, 433–437 (2008). [CrossRef]
  12. N.-N. Feng, D. Feng, S. Liao, X. Wang, P. Dong, H. Liang, C.-C. Kung, W. Qian, J. Fong, R. Shafiiha, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “30GHz Ge electro-absorption modulator integrated with 3μm silicon-on-insulator waveguide,” Opt. Express19(8), 7062–7067 (2011). [CrossRef] [PubMed]
  13. Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature437(7063), 1334–1336 (2005). [CrossRef] [PubMed]
  14. S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe Quantum Well Waveguide Modulator Monolithically Integrated With SOI Waveguides,” IEEE Photon. Technol. Lett.24(6), 461 –463 (2012). [CrossRef]
  15. D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express20(S2), A293–A308 (2012). [CrossRef]
  16. F. B. McCormick, T. J. Cloonan, F. A. P. Tooley, A. L. Lentine, J. M. Sasian, J. L. Brubaker, R. L. Morrison, S. L. Walker, R. J. Crisci, R. A. Novotny, S. J. Hinterlong, H. S. Hinton, and E. Kerbis, “Six-stage digital free-space optical switching network using symmetric self-electro-optic-effect devices,” Appl. Opt.32(26), 5153–5171 (1993). [CrossRef] [PubMed]
  17. M. Haney, R. Nair, and T. Gu, “Chip-scale integrated optical interconnects: a key enabler for future high-performance computing,” in Proc. SPIE, L. Glebov, Alexei, and R. T. Chen, eds., 82670X, 8267 (2012).
  18. D. A. B. Miller, “Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters,” Opt. Lett.14(2), 146–148 (1989). [CrossRef] [PubMed]
  19. G. P. Agarwal, Fiber-Optic Communication Systems Wiley series in Microwave and Optical Engineering, 4th ed. (Wiley, 2010). [CrossRef]
  20. A. Emami-Neyestanak, “Design of CMOS receivers for parallel optical interconnects,” Ph.D. thesis, Stanford University (2004).
  21. A. L. Lentine and F. A. P. Tooley, “Relationships between speed and tolerances for self-electro-optic-effect devices,” Appl. Opt.33(8), 1354–1367 (1994). [CrossRef] [PubMed]
  22. R. Schaevitz, E. Edwards, J. Roth, E. Fei, Y. Rong, P. Wahl, T. Kamins, J. Harris, and D. Miller, “Simple Electroabsorption Calculator for Designing 1310 nm and 1550 nm Modulators Using Germanium Quantum Wells,” IEEE J. Quantum Electron.48(2), 187–197 (2012). [CrossRef]
  23. D. Chemla, D. Miller, P. Smith, A. Gossard, and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron.20(3), 265 –275 (1984). [CrossRef]
  24. W. H. Press, S. A. Teukolsky, W. J. Vetterling, and B. P. Flannery, Numerical recipes in C++, The art of scientific computing, 2nd ed. (Cambridge University Press, 2002).
  25. S. M. Sze, The Physics of Semiconductor Devices (Wiley, New York, 1969).
  26. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica34, 149–154 (1967). [CrossRef]
  27. D. Wolpert and P. Ampadu, Managing Temperature Effects in Nanoscale Adaptive Systems, 1st ed. (Springer, 2012). [CrossRef]
  28. D. Gammon, S. Rudin, T. L. Reinecke, D. S. Katzer, and C. S. Kyono, “Phonon broadening of excitons in GaAs/AlxGa1−xAs quantum wells,” Phys. Rev. B51, 16785–16789 (1995). [CrossRef]
  29. Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Quantum-Confined Stark Effect in Ge/SiGe Quantum Wells on Si for Optical Modulators,” IEEE J. Sel. Topics Quantum Electron.12(6), 1503 –1513 (2006). [CrossRef]
  30. S. Schonenberger, N. Moll, T. Stoferle, T. Wahlbrink, J. Bolten, S. Gotzinger, T. Mollenhauer, C. Moormann, R. Mahrt, and B. Offrein, “Circular grating resonators as candidates for ultra-small photonic devices,” in Proc. SPIE, vol. 6996, p. 69906A1 (2008).
  31. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express15(22), 14,467–14,475 (2007). [CrossRef]
  32. A. W.-L. Fang, “Silicon evanascent lasers,” Ph.D. thesis, University of California Santa Barbara (2008).
  33. “IGOR Pro technical graphing and analysis,” (2010). URL www.wavemetrics.com .
  34. “Python programming language - Official website,” URL www.python.org .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited