OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5332–5337

A fast response variable optical attenuator based on blue phase liquid crystal

Ge Zhu, Bing-yan Wei, Liang-yu Shi, Xiao-wen Lin, Wei Hu, Zhang-di Huang, and Yan-qing Lu  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 5332-5337 (2013)
http://dx.doi.org/10.1364/OE.21.005332


View Full Text Article

Enhanced HTML    Acrobat PDF (1250 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Blue phase liquid crystals (BPLCs) are promising candidates for next generation display thanks to their fast response and quasi-isotropic optical properties. By taking these advantages, we propose to introduce the material into fiber-optic applications. As an example, a BPLC based variable optical attenuator (VOA) is demonstrated with a polarization independent design. The device shows normally-off feature when no field is applied. Response time down to submillisecond scale is achieved in switching between two arbitrary attenuation states. The attenuation range is also measured from 1480 to 1550 nm, which cover the whole telecomm S-band and part of the C-band. The overall performances reach the requirements for practical use; while still have room for further improvement. Through this example, the applicability of BPLC in fiber-optic devices is presented, which may impel the development of many other photonic applications from infrared to even microwave regions.

© 2013 OSA

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.5060) Fiber optics and optical communications : Phase modulation
(160.3710) Materials : Liquid crystals

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 4, 2013
Revised Manuscript: February 5, 2013
Manuscript Accepted: February 18, 2013
Published: February 25, 2013

Citation
Ge Zhu, Bing-yan Wei, Liang-yu Shi, Xiao-wen Lin, Wei Hu, Zhang-di Huang, and Yan-qing Lu, "A fast response variable optical attenuator based on blue phase liquid crystal," Opt. Express 21, 5332-5337 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-5332


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002). [CrossRef] [PubMed]
  2. Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett.94(10), 101104 (2009). [CrossRef]
  3. L. Rao, J. Yan, and S. T. Wu, “Prospects of emerging polymer-stabilized blue-phase liquid crystal displays,” J. Soc. Inf. Disp.18(11), 954–959 (2010). [CrossRef]
  4. J. S. Patel and M. W. Maeda, “Tunable polarization diversity liquid-crystal wavelength filter,” IEEE Photon. Technol. Lett.3(8), 739–740 (1991). [CrossRef]
  5. Y. H. Fan, H. Ren, and S. T. Wu, “Electrically controlled lens and prism using nanoscale polymer-dispersed and polymer-networked liquid crystals,” Proc. SPIE5289, 63–73 (2004). [CrossRef]
  6. J. L. West, G. Q. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett.86(3), 031111 (2005). [CrossRef]
  7. S. Jutamulia, G. M. Storti, W. M. Seiderman, J. Lindmayer, and D. A. Gregory, “Infrared signal processing using a liquid crystal television,” Opt. Eng.30(2), 178–182 (1991). [CrossRef]
  8. X. J. Wang, Z. D. Huang, J. Feng, X. F. Chen, X. Liang, and Y. Q. Lu, “Liquid crystal modulator with ultra-wide dynamic range and adjustable driving voltage,” Opt. Express16(17), 13168–13174 (2008). [CrossRef] [PubMed]
  9. X. W. Lin, W. Hu, X. K. Hu, X. Liang, Y. Chen, H. Q. Cui, G. Zhu, J. N. Li, V. Chigrinov, and Y. Q. Lu, “Fast response dual-frequency liquid crystal switch with photo-patterned alignments,” Opt. Lett.37(17), 3627–3629 (2012). [CrossRef] [PubMed]
  10. Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stablized blue phase liquid crystals,” Appl. Phys. Lett.96(11), 113505 (2010). [CrossRef]
  11. H.-Y. Liu, C.-T. Wang, C.-Y. Hsu, T.-H. Lin, and J.-H. Liu, “Optically tuneable blue phase photonic bandgaps,” Appl. Phys. Lett.96(12), 121103 (2010). [CrossRef]
  12. Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express19(9), 8045–8050 (2011). [CrossRef] [PubMed]
  13. C. T. Wang and T. H. Lin, “Bistable reflective polarizer-free optical switch based on dye-doped cholesteric liquid crystal Invited,” Opt. Mater. Express1(8), 1457–1462 (2011). [CrossRef]
  14. Y. H. Lin, H. S. Chen, T. H. Chiang, C. H. Wu, and H. K. Hsu, “A reflective polarizer-free electro-optical switch using dye-doped polymer-stabilized blue phase liquid crystals,” Opt. Express19(3), 2556–2561 (2011). [CrossRef] [PubMed]
  15. Y. H. Chen, C. T. Wang, C. P. Yu, and T. H. Lin, “Polarization independent Fabry-Perot filter based on polymer-stabilized blue phase liquid crystals with fast response time,” Opt. Express19(25), 25441–25446 (2011). [CrossRef] [PubMed]
  16. J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett.36(8), 1404–1406 (2011). [CrossRef] [PubMed]
  17. G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid-crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp.20(6), 341–346 (2012). [CrossRef]
  18. C. W. Chen, H. C. Jau, C. T. Wang, C. H. Lee, I. C. Khoo, and T. H. Lin, “Random lasing in blue phase liquid crystals,” Opt. Express20(21), 23978–23984 (2012). [CrossRef] [PubMed]
  19. Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. W. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu, “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express12(25), 6382–6389 (2004). [CrossRef] [PubMed]
  20. Y. Q. Lu, F. Du, Y. H. Lin, and S. T. Wu, “Variable optical attenuator based on polymer stabilized twisted nematic liquid crystal,” Opt. Express12(7), 1221–1227 (2004). [CrossRef] [PubMed]
  21. F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys.43(10), 7083–7086 (2004). [CrossRef]
  22. K. Y. Wu, J. Y. Liu, and Y. C. Chen, “Optical attenuator using polarization modulation and a feedback controller,” U.S. patent 5,963,291 (October 5, 1999).
  23. E. E. Bergmann, “Optical attenuator with combined polarization functions,” U.S. patent 5,771,120 (June 23, 1998)
  24. J. Yan and S. T. Wu, “Polymer-stabilized blue phase liquid crystals: a tutorial,” Opt. Mater. Express1(8), 1527–1535 (2011). [CrossRef]
  25. J. Yan, M. Jiao, L. Rao, and S. T. Wu, “Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite,” Opt. Express18(11), 11450–11455 (2010). [CrossRef] [PubMed]
  26. P. R. Gerber, “Electro-optical effects of a small-pitch blue-phase system,” Mol. Cryst. Liq. Cryst.116(3-4), 197–206 (1985). [CrossRef]
  27. L. H. Rao, Z. B. Ge, S. Gauza, K. M. Chen, and S. T. Wu, “Emerging Liquid Crystal Displays Based on the Kerr Effect,” Mol. Cryst. Liq. Cryst.527(1), 30–42 (2010). [CrossRef]
  28. Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett.99(20), 201105 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited