OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5338–5345

Femtosecond fiber CPA system based on picosecond master oscillator and power amplifier with CCC fiber

J. Želudevičius, R. Danilevičius, K. Viskontas, N. Rusteika, and K. Regelskis  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 5338-5345 (2013)
http://dx.doi.org/10.1364/OE.21.005338


View Full Text Article

Enhanced HTML    Acrobat PDF (2795 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Results of numerical and experimental investigations of the simple fiber CPA system seeded by nearly bandwidth-limited pulses from the picosecond oscillator are presented. We utilized self-phase modulation in a stretcher fiber to broaden the pulse spectrum and dispersion of the fiber to stretch pulses in time. During amplification in the ytterbium-doped CCC fiber, gain-shaping and self-phase modulation effects were observed, which improved pulse compression with a bulk diffraction grating compressor. After compression with spectral filtering, pulses with the duration of 400 fs and energy as high as 50 µJ were achieved, and the output beam quality was nearly diffraction-limited.

© 2013 OSA

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(140.3510) Lasers and laser optics : Lasers, fiber
(140.7090) Lasers and laser optics : Ultrafast lasers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 4, 2013
Revised Manuscript: February 9, 2013
Manuscript Accepted: February 12, 2013
Published: February 25, 2013

Citation
J. Želudevičius, R. Danilevičius, K. Viskontas, N. Rusteika, and K. Regelskis, "Femtosecond fiber CPA system based on picosecond master oscillator and power amplifier with CCC fiber," Opt. Express 21, 5338-5345 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-5338


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y.-C. Jeong, A. J. Boyland, J. K. Sahu, S.-H. Chung, J. Nilsson, and D. N. Payne, “Multi-kilowatt single-mode ytterbium-doped large-core fiber laser,” J. Opt. Soc. Korea13(4), 416–422 (2009). [CrossRef]
  2. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun.56(3), 219–221 (1985). [CrossRef]
  3. T. T. Alkeskjold, M. Laurila, L. Scolari, and J. Broeng, “Single-mode ytterbium-doped large-mode-area photonic bandgap rod fiber amplifier,” Opt. Express19(8), 7398–7409 (2011). [CrossRef] [PubMed]
  4. J. Li, X. Peng, and L. Dong, “Robust fundamental mode operation in a ytterbium-doped leakage channel fiber with an effective area of ~3000µm2,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper ME3.
  5. C.-H. Liu, G. Chang, N. Litchinister, D. Guertin, N. Jacobson, K. Tankala, and A. Galvanauskas, “Chirally coupled core fibers at 1550-nm and 1064-nm for effectively single-mode core size scaling,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CTuBB3.
  6. M. D. Perry, T. Ditmire, and B. C. Stuart, “Self-phase modulation in chirped-pulse amplification,” Opt. Lett.19(24), 2149–2151 (1994). [CrossRef] [PubMed]
  7. S. Zhou, L. Kuznetsova, A. Chong, and F. Wise, “Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers,” Opt. Express13(13), 4869–4877 (2005). [CrossRef] [PubMed]
  8. L. Kuznetsova and F. W. Wise, “Scaling of femtosecond Yb-doped fiber amplifiers to tens of microjoule pulse energy via nonlinear chirped pulse amplification,” Opt. Lett.32(18), 2671–2673 (2007). [CrossRef] [PubMed]
  9. L. Shah, Z. Liu, I. Hartl, G. Imeshev, G. Cho, and M. Fermann, “High energy femtosecond Yb cubicon fiber amplifier,” Opt. Express13(12), 4717–4722 (2005). [CrossRef] [PubMed]
  10. D. Mortag, T. Theeg, K. Hausmann, L. Grüner-Nielsen, K. G. Jespersen, U. Morgner, D. Wandt, D. Kracht, and J. Neumann, “Sub-200 fs microjoule pulses from a monolithic linear fiber CPA system,” Opt. Commun.285(5), 706–709 (2012). [CrossRef]
  11. T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. Hädrich, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Fiber chirped-pulse amplification system emitting 3.8 GW peak power,” Opt. Express19(1), 255–260 (2011). [CrossRef] [PubMed]
  12. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997). [CrossRef]
  13. D. N. Schimpf, J. Limpert, and A. Tünnermann, “Optimization of high performance ultrafast fiber laser systems to >10 GW peak power,” J. Opt. Soc. Am. B27(10), 2051–2060 (2010). [CrossRef]
  14. D. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “Decrease of pulse-contrast in nonlinear chirped-pulse amplification systems due to high-frequency spectral phase ripples,” Opt. Express16(12), 8876–8886 (2008). [CrossRef] [PubMed]
  15. J. Lægsgaard, “Control of fibre laser mode-locking by narrow-band Bragg gratings,” J. Phys. B-At. Mol. Opt.41(9), 095401 (2008). [CrossRef]
  16. G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  17. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997). [CrossRef]
  18. D. U. Noske, N. Pandit, and J. R. Taylor, “Source of spectral and temporal instability in soliton fiber lasers,” Opt. Lett.17(21), 1515–1517 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited