OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5346–5362

Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter - theory and applications

Chao Zuo, Qian Chen, Yingjie Yu, and Anand Asundi  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 5346-5362 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2677 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Several existing strategies for estimating the axial intensity derivative in the transport-of-intensity equation (TIE) from multiple intensity measurements have been unified by the Savitzky-Golay differentiation filter - an equivalent convolution solution for differentiation estimation by least-squares polynomial fitting. The different viewpoint from the digital filter in signal processing not only provides great insight into the behaviors, the shortcomings, and the performance of these existing intensity derivative estimation algorithms, but more important, it also suggests a new way of improving solution strategies by extending the applications of Savitzky-Golay differentiation filter in TIE. Two novel methods for phase retrieval based on TIE are presented - the first by introducing adaptive-degree strategy in spatial domain and the second by selecting optimal spatial frequencies in Fourier domain. Numerical simulations and experiments verify that the second method outperforms the existing methods significantly, showing reliable retrieved phase with both overall contrast and fine phase variations well preserved.

© 2013 OSA

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.5070) Image processing : Phase retrieval
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

ToC Category:
Image Processing

Original Manuscript: January 9, 2013
Revised Manuscript: February 8, 2013
Manuscript Accepted: February 13, 2013
Published: February 25, 2013

Chao Zuo, Qian Chen, Yingjie Yu, and Anand Asundi, "Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter - theory and applications," Opt. Express 21, 5346-5362 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. D. Barone-Nugent, A. Barty, and K. A. Nugent, “Quantitative phase-amplitude microscopy I: optical microscopy,” J. Microsc.206(3), 194–203 (2002). [CrossRef] [PubMed]
  2. S. Bajt, A. Barty, K. A. Nugent, M. McCartney, M. Wall, and D. Paganin, “Quantitative phase-sensitive imaging in a transmission electron microscope,” Ultramicroscopy83(1-2), 67–73 (2000). [CrossRef] [PubMed]
  3. T. E. Gureyev and S. W. Wilkins, “On X-ray phase retrieval from polychromatic images,” Opt. Commun.147(4-6), 229–232 (1998). [CrossRef]
  4. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett.31(6), 775–777 (2006). [CrossRef] [PubMed]
  5. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett.30(5), 468–470 (2005). [CrossRef] [PubMed]
  6. M. Reed Teague, “Deterministic phase retrieval: a Green's function solution,” J. Opt. Soc. Am.73(11), 1434–1441 (1983). [CrossRef]
  7. N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun.49(1), 6–10 (1984). [CrossRef]
  8. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett.23(11), 817–819 (1998). [CrossRef] [PubMed]
  9. D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett.80(12), 2586–2589 (1998). [CrossRef]
  10. A. M. Zysk, R. W. Schoonover, P. S. Carney, and M. A. Anastasio, “Transport of intensity and spectrum for partially coherent fields,” Opt. Lett.35(13), 2239–2241 (2010). [CrossRef] [PubMed]
  11. S. S. Gorthi and E. Schonbrun, “Phase imaging flow cytometry using a focus-stack collecting microscope,” Opt. Lett.37(4), 707–709 (2012). [CrossRef] [PubMed]
  12. L. Waller, S. S. Kou, C. J. R. Sheppard, and G. Barbastathis, “Phase from chromatic aberrations,” Opt. Express18(22), 22817–22825 (2010). [CrossRef] [PubMed]
  13. M. Beleggia, M. A. Schofield, V. V. Volkov, and Y. Zhu, “On the transport of intensity technique for phase retrieval,” Ultramicroscopy102(1), 37–49 (2004). [CrossRef] [PubMed]
  14. D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc.214(1), 51–61 (2004). [CrossRef] [PubMed]
  15. K. Ishizuka and B. Allman, “Phase measurement of atomic resolution image using transport of intensity equation,” J. Electron Microsc. (Tokyo)54(3), 191–197 (2005). [CrossRef] [PubMed]
  16. M. Soto and E. Acosta, “Improved phase imaging from intensity measurements in multiple planes,” Appl. Opt.46(33), 7978–7981 (2007). [CrossRef] [PubMed]
  17. L. Waller, L. Tian, and G. Barbastathis, “Transport of Intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express18(12), 12552–12561 (2010). [CrossRef] [PubMed]
  18. R. Bie, X.-H. Yuan, M. Zhao, and L. Zhang, “Method for estimating the axial intensity derivative in the TIE with higher order intensity derivatives and noise suppression,” Opt. Express20(7), 8186–8191 (2012). [CrossRef] [PubMed]
  19. B. Xue, S. Zheng, L. Cui, X. Bai, and F. Zhou, “Transport of intensity phase imaging from multiple intensities measured in unequally-spaced planes,” Opt. Express19(21), 20244–20250 (2011). [CrossRef] [PubMed]
  20. S. Zheng, B. Xue, W. Xue, X. Bai, and F. Zhou, “Transport of intensity phase imaging from multiple noisy intensities measured in unequally-spaced planes,” Opt. Express20(2), 972–985 (2012). [CrossRef] [PubMed]
  21. A. V. Martin, F. R. Chen, W. K. Hsieh, J. J. Kai, S. D. Findlay, and L. J. Allen, “Spatial incoherence in phase retrieval based on focus variation,” Ultramicroscopy106(10), 914–924 (2006). [CrossRef] [PubMed]
  22. L. N. Trefethen, Finite difference and spectral methods for ordinary and partial differential equations, unpublished text, available at http://web.comlab.ox.ac.uk/oucl/work/nick.trefethen/pdetext.html , 1996.
  23. S. J. Orfanidis, Introduction to Signal Processing (Prentice-Hall, Inc., 1995).
  24. A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares Procedures,” Anal. Chem.36(8), 1627–1639 (1964). [CrossRef]
  25. P. A. Gorry, “General least-squares smoothing and differentiation of nonuniformly spaced data by the convolution method,” Anal. Chem.63(5), 534–536 (1991). [CrossRef]
  26. J. Luo, K. Ying, P. He, and J. Bai, “Properties of Savitzky–Golay digital differentiators,” Digit. Signal Process.15(2), 122–136 (2005). [CrossRef]
  27. T. E. Gureyev and K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun.133(1-6), 339–346 (1997). [CrossRef]
  28. K. A. Nugent, T. E. Gureyev, D. J. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard X rays,” Phys. Rev. Lett.77(14), 2961–2964 (1996). [CrossRef] [PubMed]
  29. P. Barak, “Smoothing and differentiation by an adaptive-degree polynomial filter,” Anal. Chem.67(17), 2758–2762 (1995). [CrossRef]
  30. J. M. Cowley, Diffraction Physics, 2 ed. (North-Holland Pub. Co, 1993).
  31. Q. Weijuan, C. O. Choo, Y. Yingjie, and A. Asundi, “Microlens characterization by digital holographic microscopy with physical spherical phase compensation,” Appl. Opt.49(33), 6448–6454 (2010). [CrossRef] [PubMed]
  32. W. Qu, C. O. Choo, V. R. Singh, Y. Yingjie, and A. Asundi, “Quasi-physical phase compensation in digital holographic microscopy,” J. Opt. Soc. Am. A26(9), 2005–2011 (2009). [CrossRef] [PubMed]
  33. S. S. Kou, L. Waller, G. Barbastathis, and C. J. R. Sheppard, “Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging,” Opt. Lett.35(3), 447–449 (2010). [CrossRef] [PubMed]
  34. L. Tian, J. C. Petruccelli, and G. Barbastathis, “Nonlinear diffusion regularization for transport of intensity phase imaging,” Opt. Lett.37(19), 4131–4133 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1774 KB)     
» Media 2: MOV (511 KB)     
» Media 3: MOV (76 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited