OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5363–5372

Tight focusing of a higher-order radially polarized beam transmitting through multi-zone binary phase pupil filters

Hanming Guo, Xiaoyu Weng, Man Jiang, Yanhui Zhao, Guorong Sui, Qi Hu, Yang Wang, and Songlin Zhuang  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 5363-5372 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1108 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



When the pupil filters are used to improve the performance of the imaging system, the conversion efficiency is a critical characteristic for real applications. Here, in order to take full advantage of the subwavelength focusing property of the radially polarized higher-order Laguerre-Gaussian (LG) beam, we introduce the multi-zone binary phase pupil filters into the imaging system to deal with the problem that the focal spot is split along the z axis for the small size parameter of the incident LG beam. We provide an easy-to-perform procedure for the design of multi-zone binary phase pupil filters, where the zone numbers of π phase are uncertain when the optimizing procedure starts. Based on this optimizing procedure, we successfully find the set of optimum structures of a seventeen-belt binary phase pupil filters and generate the excellent focal spot, where the depth of focus, the focal spot transverse size, the Strehl ratio, and the sidelobe intensity are 9.53λ , 0.41λ , 41.75% and 16.35% in vacuum, respectively. Most importantly, even allowing the power loss of the incident LG beam truncated by the pupil of the imaging system, the conversion efficiency is still as high as 37.3%. Theoretical calculations show that we succeed to have sufficient conversion efficiency while utilizing the pupil filters to decrease the focal spot and extend the depth of focus.

© 2013 OSA

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(110.2990) Imaging systems : Image formation theory
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

Original Manuscript: January 10, 2013
Revised Manuscript: February 18, 2013
Manuscript Accepted: February 18, 2013
Published: February 25, 2013

Hanming Guo, Xiaoyu Weng, Man Jiang, Yanhui Zhao, Guorong Sui, Qi Hu, Yang Wang, and Songlin Zhuang, "Tight focusing of a higher-order radially polarized beam transmitting through multi-zone binary phase pupil filters," Opt. Express 21, 5363-5372 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci.253(1274), 358–379 (1959). [CrossRef]
  2. H. Guo, J. Chen, and S. Zhuang, “Resolution of aplanatic systems with various semiapertures, viewed from the two sides of the diffracting aperture,” J. Opt. Soc. Am. A23(11), 2756–2763 (2006). [CrossRef] [PubMed]
  3. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003). [CrossRef] [PubMed]
  4. Y. J. Yoon, W. C. Kim, N. C. Park, K. S. Park, and Y. P. Park, “Feasibility study of the application of radially polarized illumination to solid immersion lens-based near-field optics,” Opt. Lett.34(13), 1961–1963 (2009). [CrossRef] [PubMed]
  5. H. Guo, J. Chen, and S. Zhuang, “Vector plane wave spectrum of an arbitrary polarized electromagnetic wave,” Opt. Express14(6), 2095–2100 (2006). [CrossRef] [PubMed]
  6. K. J. Moh, X. C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, “Radial polarization induced surface plasmon virtual probe for two-photon fluorescence microscopy,” Opt. Lett.34(7), 971–973 (2009). [CrossRef] [PubMed]
  7. Y. Ku, C. Kuang, X. Hao, Y. Xue, H. Li, and X. Liu, “Superenhanced three-dimensional confinement of light by compound metal-dielectric microspheres,” Opt. Express20(15), 16981–16991 (2012). [CrossRef]
  8. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express12(15), 3377–3382 (2004). [CrossRef] [PubMed]
  9. N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett.85(25), 6239–6241 (2004). [CrossRef]
  10. K. Yoshiki, K. Ryosuke, M. Hashimoto, T. Araki, and N. Hashimoto, “Second-harmonic-generation microscope using eight-segment polarization-mode converter to observe three-dimensional molecular orientation,” Opt. Lett.32(12), 1680–1682 (2007). [CrossRef] [PubMed]
  11. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007). [CrossRef]
  12. G. Terakado, K. Watanabe, and H. Kano, “Scanning confocal total internal reflection fluorescence microscopy by using radial polarization in the illumination system,” Appl. Opt.48(6), 1114–1118 (2009). [CrossRef]
  13. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001). [CrossRef] [PubMed]
  14. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express7(2), 77–87 (2000). [CrossRef] [PubMed]
  15. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics2(8), 501–505 (2008). [CrossRef]
  16. K. Kitamura, K. Sakai, and S. Noda, “Sub-wavelength focal spot with long depth of focus generated by radially polarized, narrow-width annular beam,” Opt. Express18(5), 4518–4525 (2010). [CrossRef] [PubMed]
  17. C. Kuang, X. Hao, X. Liu, T. Wang, and Y. Ku, “Formation of sub-half-wavelength focal spot with ultra long depth of focus,” Opt. Commun.284(7), 1766–1769 (2011). [CrossRef]
  18. H. Dehez, A. April, and M. Piché, “Needles of longitudinally polarized light: guidelines for minimum spot size and tunable axial extent,” Opt. Express20(14), 14891–14905 (2012). [CrossRef] [PubMed]
  19. Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A24(6), 1793–1798 (2007). [CrossRef] [PubMed]
  20. Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express19(17), 15947–15954 (2011). [CrossRef] [PubMed]
  21. Y. Kozawa and S. Sato, “Focusing of higher-order radially polarized Laguerre-Gaussian beam,” J. Opt. Soc. Am. A29(11), 2439–2443 (2012). [CrossRef] [PubMed]
  22. B. Tian and J. Pu, “Tight focusing of a double-ring-shaped, azimuthally polarized beam,” Opt. Lett.36(11), 2014–2016 (2011). [CrossRef] [PubMed]
  23. C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt.43(22), 4322–4327 (2004). [CrossRef] [PubMed]
  24. M. Yun, L. Liu, J. Sun, and D. Liu, “Three-dimensional superresolution by three-zone complex pupil filters,” J. Opt. Soc. Am. A22(2), 272–277 (2005). [CrossRef] [PubMed]
  25. T. G. Jabbour and S. M. Kuebler, “Vector diffraction analysis of high numerical aperture focused beams modified by two- and three-zone annular multi-phase plates,” Opt. Express14(3), 1033–1043 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited