OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5379–5390

Imaging live humans through smoke and flames using far-infrared digital holography

M. Locatelli, E. Pugliese, M. Paturzo, V. Bianco, A. Finizio, A. Pelagotti, P. Poggi, L. Miccio, R. Meucci, and P. Ferraro  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 5379-5390 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1520 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The ability to see behind flames is a key challenge for the industrial field and particularly for the safety field. Development of new technologies to detect live people through smoke and flames in fire scenes is an extremely desirable goal since it can save human lives. The latest technologies, including equipment adopted by fire departments, use infrared bolometers for infrared digital cameras that allow users to see through smoke. However, such detectors are blinded by flame-emitted radiation. Here we show a completely different approach that makes use of lensless digital holography technology in the infrared range for successful imaging through smoke and flames. Notably, we demonstrate that digital holography with a cw laser allows the recording of dynamic human-size targets. In this work, easy detection of live, moving people is achieved through both smoke and flames, thus demonstrating the capability of digital holography at 10.6 μm.

© 2013 OSA

OCIS Codes
(110.3080) Imaging systems : Infrared imaging
(290.7050) Scattering : Turbid media
(110.0113) Imaging systems : Imaging through turbid media
(090.1995) Holography : Digital holography
(040.2235) Detectors : Far infrared or terahertz

ToC Category:
Imaging Systems

Original Manuscript: December 11, 2012
Revised Manuscript: January 11, 2013
Manuscript Accepted: January 15, 2013
Published: February 26, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

M. Locatelli, E. Pugliese, M. Paturzo, V. Bianco, A. Finizio, A. Pelagotti, P. Poggi, L. Miccio, R. Meucci, and P. Ferraro, "Imaging live humans through smoke and flames using far-infrared digital holography," Opt. Express 21, 5379-5390 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U.S. Fire Administration, http://www.usfa.fema.gov/statistics .
  2. G. Zizak, “Flame emission spectroscopy: fundamentals and applications. Lecture given at the ICS training course on laser diagnostics of combustion processes,” (NILES, University of Cairo, Egypt, 2000).
  3. A. Àgueda, E. Pastor, Y. Pérez, and E. Planas, “Experimental study of the emissivity of flames resulting from the combustion of forest fuels,” Int. J. Therm. Sci.49(3), 543–554 (2010). [CrossRef]
  4. G. Parent, Z. Acem, S. Lechêne, and P. Boulet, “Measurement of infrared radiation emitted by the flame of a vegetation fire,” Int. J. Therm. Sci.49(3), 555–562 (2010). [CrossRef]
  5. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH Verlag GmbH & Co. KGaA, 2005).
  6. M. Hÿtch, F. Houdellier, F. Hüe, and E. Snoeck, “Nanoscale holographic interferometry for strain measurements in electronic devices,” Nature453(7198), 1086–1089 (2008). [CrossRef] [PubMed]
  7. I. Yamaguchi, T. Ida, M. Yokota, and K. Yamashita, “Surface shape measurement by phase-shifting digital holography with a wavelength shift,” Appl. Opt.45(29), 7610–7616 (2006). [CrossRef] [PubMed]
  8. Y. Kikuchi, D. Barada, T. Kiire, and T. Yatagai, “Doppler phase-shifting digital holography and its application to surface shape measurement,” Opt. Lett.35(10), 1548–1550 (2010). [CrossRef] [PubMed]
  9. Y. Frauel, A. Castro, T. J. Naughton, and B. Javidi, “Resistance of the double random phase encryption against various attacks,” Opt. Express15(16), 10253–10265 (2007). [CrossRef] [PubMed]
  10. O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip10(11), 1417–1428 (2010). [CrossRef] [PubMed]
  11. M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip12(17), 3073–3076 (2012). [CrossRef] [PubMed]
  12. V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett.37(20), 4212–4214 (2012). [CrossRef] [PubMed]
  13. E. Shaffer, C. Moratal, P. Magistretti, P. Marquet, and C. Depeursinge, “Label-free second-harmonic phase imaging of biological specimen by digital holographic microscopy,” Opt. Lett.35(24), 4102–4104 (2010). [CrossRef] [PubMed]
  14. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics2(3), 190–195 (2008). [CrossRef]
  15. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express19(2), 1016–1026 (2011). [CrossRef] [PubMed]
  16. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express16(16), 11776–11781 (2008). [CrossRef] [PubMed]
  17. V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express14(12), 5168–5177 (2006). [CrossRef] [PubMed]
  18. M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express18(9), 8806–8815 (2010). [CrossRef] [PubMed]
  19. L. Onural, 3D Video Technologies: An Overview of Research Trends (SPIE, 2010).
  20. B. Katz, J. Rosen, R. Kelner, and G. Brooker, “Enhanced resolution and throughput of Fresnel incoherent correlation holography (FINCH) using dual diffractive lenses on a spatial light modulator (SLM),” Opt. Express20(8), 9109–9121 (2012). [CrossRef] [PubMed]
  21. M. S. Heimbeck, M. K. Kim, D. A. Gregory, and H. O. Everitt, “Terahertz digital holography using angular spectrum and dual wavelength reconstruction methods,” Opt. Express19(10), 9192–9200 (2011). [CrossRef] [PubMed]
  22. F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt.45(5), 864–871 (2006). [CrossRef] [PubMed]
  23. H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett.101(23), 238102 (2008). [CrossRef] [PubMed]
  24. M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Gertrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 microm: route for 3D imaging at long infrared wavelengths,” Opt. Lett.35(12), 2112–2114 (2010). [CrossRef] [PubMed]
  25. E. Stoykova, F. Yaraş, H. Kang, L. Onural, A. Geltrude, M. Locatelli, M. Paturzo, A. Pelagotti, R. Meucci, and P. Ferraro, “Visible reconstruction by a circular holographic display from digital holograms recorded under infrared illumination,” Opt. Lett.37(15), 3120–3122 (2012). [CrossRef] [PubMed]
  26. A. Pelagotti, M. Locatelli, A. Geltrude, P. Poggi, R. Meucci, M. Paturzo, L. Miccio, and P. Ferraro, “Reliability of 3D imaging by digital holography at long IR wavelength,” J. Disp. Technol.6(10), 465–471 (2010). [CrossRef]
  27. E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun.215(4-6), 257–262 (2003). [CrossRef]
  28. M. P. Georges, J.-F. Vandenrijt, C. Thizy, Y. Stockman, P. Queeckers, F. Dubois, and D. Doyle, “Digital holographic interferometry with CO2 lasers and diffused illumination applied to large space reflector metrology [Invited],” Appl. Opt.52(1), A102–A116 (2013). [CrossRef] [PubMed]
  29. I. Alexeenko, J.-F. Vandenrijt, G. Pedrini, C. Thizy, B. Vollheim, W. Osten, and M. P. Georges, “Nondestructive testing by using long-wave infrared interferometric techniques with CO2 lasers and microbolometer arrays,” Appl. Opt.52(1), A56–A67 (2013). [CrossRef] [PubMed]
  30. P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010). [CrossRef] [PubMed]
  31. M. Cho and B. Javidi, “Three-dimensional tracking of occluded objects using integral imaging,” Opt. Lett.33(23), 2737–2739 (2008). [CrossRef] [PubMed]
  32. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express20(10), 10583–10590 (2012). [CrossRef] [PubMed]
  33. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008). [CrossRef] [PubMed]
  34. M. P. Georges, J.-F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, and W. Osten, “Speckle interferometry at 10µm with CO2 lasers and microbolometers array,” Proc. SPIE8412, 84121O (2012). [CrossRef]
  35. X. Cai and H. Wang, “The influence of hologram aperture on speckle noise in the reconstructed image of digital holography and its reduction,” Opt. Commun.281(2), 232–237 (2008). [CrossRef]
  36. J. Maycock, B. M. Hennelly, J. B. McDonald, Y. Frauel, A. Castro, B. Javidi, and T. J. Naughton, “Reduction of speckle in digital holography by discrete Fourier filtering,” J. Opt. Soc. Am. A24(6), 1617–1622 (2007). [CrossRef] [PubMed]
  37. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company Publishers, 2007), Chap. 5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (4785 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited