OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5391–5400

Method for characterization of Si waveguide propagation loss

Michele Moresco, Marco Romagnoli, Stefano Boscolo, Michele Midrio, Matteo Cherchi, Ehsan Shah Hosseini, Douglas Coolbaugh, Michael R. Watts, and Birendra Dutt  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 5391-5400 (2013)
http://dx.doi.org/10.1364/OE.21.005391


View Full Text Article

Enhanced HTML    Acrobat PDF (1375 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new method for measuring waveguide propagation loss in silicon nanowires is presented. This method, based on the interplay between traveling ring modes and standing wave modes due to back-scattering from edge roughess, is accurate and can be used for on wafer measurement of test structures. Examples of loss measurements and fitting are reported.

© 2013 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.3120) Optical devices : Integrated optics devices
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: December 19, 2012
Revised Manuscript: February 4, 2013
Manuscript Accepted: February 5, 2013
Published: February 26, 2013

Citation
Michele Moresco, Marco Romagnoli, Stefano Boscolo, Michele Midrio, Matteo Cherchi, Ehsan Shah Hosseini, Douglas Coolbaugh, Michael R. Watts, and Birendra Dutt, "Method for characterization of Si waveguide propagation loss," Opt. Express 21, 5391-5400 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-5391


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. B. Miller, “Optical interconnects to electronic chips,” Appl. Opt.49(25), F59–F70 (2010). [CrossRef] [PubMed]
  2. S. J. B. Yoo, “Future prospects of silicon photonics in next generation communication and computing systems,” Electron. Lett.45(12), 584–588 (2009). [CrossRef]
  3. D. B. Keck and R. Tynes, “Spectral response of low-loss optical waveguides,” Appl. Opt.11(7), 1502–1506 (1972). [CrossRef] [PubMed]
  4. S. Taebi, M. Khorasaninejad, and S. S. Saini, “Modified Fabry-Perot interferometric method for waveguide loss measurement,” Appl. Opt.47(35), 6625–6630 (2008). [CrossRef] [PubMed]
  5. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-Loss SOI Photonic wires and ring resonators fabricated With deep UV lithography,” IEEE Photon. Technol. Lett.16(5), 1328–1330 (2004). [CrossRef]
  6. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express15(5), 2307–2314 (2007). [CrossRef] [PubMed]
  7. T. R. Bourk, M. M. Z. Kharadly, and J. E. Lewis, “Measurement of waveguide attenuation by resonance methods,” Electron. Lett.4(13), 267–268 (1968). [CrossRef]
  8. K. K. Lee, D. R. Lim, L. Hsin-Chiao, A. J. Agarwal,, L. C. Foresi, and Kimerling.,” Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett.77, 1617–1619 (2000). [CrossRef]
  9. M. Williamson and A. Neureuther, “Enhanced, quantitative analysis of resist image contrast upon line edge roughness (LER),” Proc. SPIE5039, 423–432 (2003). [CrossRef]
  10. T. Barwicz and H. A. Haus, “Three-dimensional analysis os scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol.23(9), 2719–2732 (2005). [CrossRef]
  11. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett.26(23), 1888–1890 (2001). [CrossRef]
  12. B. E. Little, J. P. Laine, and S. T. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett.22(1), 4–6 (1997). [CrossRef] [PubMed]
  13. R. E. Collin, Foundation for Microwave Engineering, 2nd ed. (McGraw-Hill, N.Y., 2000).
  14. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.36(4), 321–322 (2000). [CrossRef]
  15. Z. Zhang, M. Dainese, L. Wosinski, and M. Qiu, “Resonance-splitting and enhanced notch depth in SOI ring resonators with mutual mode coupling,” Opt. Express16(7), 4621–4630 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited