OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5401–5412

Physical interpretation of intercore crosstalk in multicore fiber: effects of macrobend, structure fluctuation, and microbend

Tetsuya Hayashi, Takashi Sasaki, Eisuke Sasaoka, Kunimasa Saitoh, and Masanori Koshiba  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 5401-5412 (2013)
http://dx.doi.org/10.1364/OE.21.005401


View Full Text Article

Enhanced HTML    Acrobat PDF (1539 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have derived an intuitively interpretable expression of the average power-coupling coefficient for estimating the inter-core crosstalk of the multicore fiber. Based on the derived expression, we discuss how the structure fluctuation and macrobend can affect the crosstalk, and organize previously reported methods for crosstalk suppression. We also discuss how the microbending can affect the crosstalk in homogeneous and heterogeneous MCFs, based on the derived expression and previously reported measurement results.

© 2013 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2400) Fiber optics and optical communications : Fiber properties
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: December 27, 2012
Revised Manuscript: February 18, 2013
Manuscript Accepted: February 19, 2013
Published: February 26, 2013

Citation
Tetsuya Hayashi, Takashi Sasaki, Eisuke Sasaoka, Kunimasa Saitoh, and Masanori Koshiba, "Physical interpretation of intercore crosstalk in multicore fiber: effects of macrobend, structure fluctuation, and microbend," Opt. Express 21, 5401-5412 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-5401


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Morioka, “New generation optical infrastructure technologies: EXAT initiative towards 2020 and beyond,” in OptoElectron. Commun. Conf. (OECC) (2009), paper FT4. [CrossRef]
  2. M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express6(2), 98–103 (2009). [CrossRef]
  3. K. Takenaga, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by quasi-homogeneous solid multi-core fiber,” in Opt. Fiber Commun. Conf. (OFC) (2010), paper OWK7.
  4. J. M. Fini, B. Zhu, T. F. Taunay, and M. F. Yan, “Statistics of crosstalk in bent multicore fibers,” Opt. Express18(14), 15122–15129 (2010). [CrossRef] [PubMed]
  5. T. Hayashi, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Crosstalk variation of multi-core fibre due to fibre bend,” in Eur. Conf. Opt. Commun. (ECOC) (2010), paper We.8.F.6. [CrossRef]
  6. K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun.E94-B(2), 409–416 (2011). [CrossRef]
  7. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Low-crosstalk and low-loss multi-core fiber utilizing fiber bend,” in Opt. Fiber Commun. Conf. (OFC) (2011), paper OWJ3.
  8. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Ultra-low-crosstalk multi-core fiber feasible to ultra-long-haul transmission,” in Opt. Fiber Commun. Conf. (OFC) (2011), paper PDPC2.
  9. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express19(17), 16576–16592 (2011). [CrossRef] [PubMed]
  10. M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Multi-core fiber design and analysis: coupled-mode theory and coupled-power theory,” Opt. Express19(26), B102–B111 (2011). [CrossRef] [PubMed]
  11. M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photon. J.4(5), 1987–1995 (2012). [CrossRef]
  12. K. Petermann, “Microbending loss in monomode fibers,” Electron. Lett.12(4), 107–109 (1976). [CrossRef]
  13. J. M. Fini, B. Zhu, T. F. Taunay, M. F. Yan, and K. S. Abedin, “Crosstalk in multicore fibers with randomness: gradual drift vs. short-length variations,” Opt. Express20(2), 949–959 (2012). [CrossRef] [PubMed]
  14. K. Saitoh, T. Matsui, T. Sakamoto, M. Koshiba, and S. Tomita, “Multi-core hole-assisted fibers for high core density space division multiplexing,” in OptoElectron. Commun. Conf. (OECC) (2010), paper 7C2–1.
  15. K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by trench-assisted multi-core fiber,” in Opt. Fiber Commun. Conf. (OFC) (2011), paper OWJ4.
  16. D. M. Taylor, C. R. Bennett, T. J. Shepherd, L. F. Michaille, M. D. Nielsen, and H. R. Simonsen, “Demonstration of multi-core photonic crystal fibre in an optical interconnect,” Electron. Lett.42(6), 331–332 (2006). [CrossRef]
  17. K. Imamura, K. Mukasa, R. Sugizaki, Y. Mimura, and T. Yagi, “Multi-core holey fibers for ultra large capacity wide-band transmission,” in Eur. Conf. Opt. Commun. (ECOC) (2008), paper P.1.17. [CrossRef]
  18. K. Imamura, K. Mukasa, Y. Mimura, and T. Yagi, “Multi-core holey fibers for the long-distance (>100 km) ultra large capacity transmission,” in Opt. Fiber Commun. Conf. (OFC) (2009), paper OTuC3.
  19. G. Le Noane, D. Boscher, P. Grosso, J. C. Bizeul, and C. Botton, “Ultra high density cables using a new concept of bunched multicore monomode fibers: A key for the future FTTH networks,” in Int. Wire Cable Symp. (IWCS) (1994), 203–210.
  20. J. Sakaguchi, Y. Awaji, N. Wada, T. Hayashi, T. Nagashima, T. Kobayashi, and M. Watanabe, “Propagation characteristics of seven-core fiber for spatial and wavelength division multiplexed 10-Gbit/s channels,” in Opt. Fiber Commun. Conf. (OFC) (2011), paper OWJ2.
  21. K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Low-crosstalk multi-core fibers for long-haul transmission,” Proc. SPIE8284, 82840I, 82840I-8 (2012). [CrossRef]
  22. J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber,” Opt. Express20(14), 15157–15170 (2012). [CrossRef] [PubMed]
  23. T. Hayashi, T. Sasaki, and E. Sasaoka, “Microbending-induced crosstalk increase in heterogeneous multi-core fiber,” in Eur. Conf. Opt. Commun. (ECOC) (2011), paper Mo.1.LeCervin.3.
  24. T. Hayashi, T. Sasaki, and E. Sasaoka, “Multi-core fibers and their crosstalk characteristics,” in IEEE Photonics Society Summer Topical Meeting Series (2012), paper TuC4.1.
  25. W.-P. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A11(3), 963–983 (1994). [CrossRef]
  26. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Characterization of crosstalk in ultra-low-crosstalk multi-core fiber,” J. Lightwave Technol.30(4), 583–589 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited