OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5529–5535

Generating superposition of up-to three photons for continuous variable quantum information processing

Mitsuyoshi Yukawa, Kazunori Miyata, Takahiro Mizuta, Hidehiro Yonezawa, Petr Marek, Radim Filip, and Akira Furusawa  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 5529-5535 (2013)
http://dx.doi.org/10.1364/OE.21.005529


View Full Text Article

Enhanced HTML    Acrobat PDF (1045 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop an experimental scheme based on a continuous-wave (cw) laser for generating arbitrary superpositions of photon number states. In this experiment, we successfully generate superposition states of zero to three photons, namely advanced versions of superpositions of two and three coherent states. They are fully compatible with developed quantum teleportation and measurement-based quantum operations with cw lasers. Due to achieved high detection efficiency, we observe, without any loss correction, multiple areas of negativity of Wigner function, which confirm strongly nonclassical nature of the generated states.

© 2013 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: January 23, 2013
Revised Manuscript: February 21, 2013
Manuscript Accepted: February 21, 2013
Published: February 27, 2013

Citation
Mitsuyoshi Yukawa, Kazunori Miyata, Takahiro Mizuta, Hidehiro Yonezawa, Petr Marek, Radim Filip, and Akira Furusawa, "Generating superposition of up-to three photons for continuous variable quantum information processing," Opt. Express 21, 5529-5535 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-5529


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. K. Wooters and W. H. Zurek, “A single quantum cannot be cloned,” Nature299, 802–803 (1982). [CrossRef]
  2. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature464, 45–53 (2010). [CrossRef] [PubMed]
  3. D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature402, 390–393 (1999). [CrossRef]
  4. S. D. Bartlett and W. J. Munro, “Quantum teleportation of optical quantum gates,” Phys. Rev. Lett. 90, 117901 (2003). [CrossRef] [PubMed]
  5. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photon. 3, 687–695 (2009). [CrossRef]
  6. C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012). [CrossRef]
  7. A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum State Reconstruction of the Single-Photon Fock State,” Phys. Rev. Lett. 87, 050402 (2001). [CrossRef] [PubMed]
  8. A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Quantum Homodyne Tomography of a Two-Photon Fock State,” Phys. Rev. Lett. 96, 213601 (2006). [CrossRef] [PubMed]
  9. J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes, and E. S. Polzik, “High purity bright single photon source,” Opt. Express15(13), 7940–7949 (2007). [CrossRef] [PubMed]
  10. M. Dakna, J. Clausen, L. Knöll, and D.-G. Welsch, “Generation of arbitrary quantum states of traveling fields,” Phys. Rev. A59, 1658–1661 (1999). [CrossRef]
  11. J. Fiurás̆ek, R. García-Patrón, and N. J. Cerf, “Conditional generation of arbitrary single-mode quantum states of light by repeated photon subtractions,” Phys. Rev. A72, 033822 (2005). [CrossRef]
  12. P. Marek, R. Filip, and A. Furusawa, “Deterministic implementation of weak quantum cubic nonlinearity,” Phys. Rev. A84, 053802 (2011). [CrossRef]
  13. A. I. Lvovsky and J. Mlynek, “Quantum-Optical Catalysis: Generating Nonclassical States of Light by Means of Linear Optics,” Phys. Rev. Lett. 88, 250401 (2002). [CrossRef] [PubMed]
  14. E. Bimbard, N. Jain, A. MacRae, and A. I. Lvovsky, “Quantum-optical state engineering up to the two-photon level,” Nat. Photonics4, 243–247 (2010). [CrossRef]
  15. R. Filip, P. Marek, and U.L. Andersen, “Measurement-induced continuous-variable quantum interactions,” Phys. Rev. A71, 042308 (2005). [CrossRef]
  16. J. Yoshikawa, T. Hayashi, T. Akiyama, N. Takei, A. Huck, U. L. Andersen, and A. Furusawa, “Demonstration of deterministic and high fidelity squeezing of quantum information,” Phys. Rev. A76, 060301(R)(2007). [CrossRef]
  17. J. Yoshikawa, Y. Miwa, A. Huck, U. L. Andersen, P. van Loock, and A. Furusawa, “Demonstration of a Quantum Nondemolition Sum Gate,” Phys. Rev. Lett. 101, 250501 (2008). [CrossRef] [PubMed]
  18. Y. Miwa, J. Yoshikawa, N. Iwata, M. Endo, P. Marek, R. Filip, P. van Loock, and A. Furusawa, “Unconditional conversion between quantum particles and waves,” arXiv: 1209.2804[quant-ph].
  19. T.C. Ralph, A. Gilchrist, G.J. Milburn, W.J. Munro, and S. Glancy, “Quantum computation with optical coherent states,” Phys. Rev. A68, 042319 (2003). [CrossRef]
  20. S. Deleglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J.-M. Raimond, and S. Haroche, “Reconstruction of non-classical cavity field states with snapshots of their decoherence,” Nature455, 510–514 (2008). [CrossRef] [PubMed]
  21. K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki, “Photon subtracted squeezed states generated with periodically poled KTiOPO4,” Opt. Express15, 3568–3574 (2007). [CrossRef] [PubMed]
  22. D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244–1247 (1993). [CrossRef] [PubMed]
  23. A. I. Lvovsky, “Iterative maximum-likelihood reconstruction in quantum homodyne tomography,” J. Opt. B6, S556–S559 (2004). [CrossRef]
  24. A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating Optical Schrödinger Kittens for Quantum Information Processing,” Science312, 83–86 (2006). [CrossRef] [PubMed]
  25. J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a Superposition of Odd Photon Number States for Quantum Information Networks,” Phys. Rev. Lett. 97, 083604 (2006). [CrossRef] [PubMed]
  26. D. Menzies and R. Filip, “Gaussian-optimized preparation of non-Gaussian pure states,” Phys. Rev. A79, 012313 (2009). [CrossRef]
  27. A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and P. Grangier, “Generation of optical ’Schrödinger cats’ from photon number states,” Nature448, 784–786 (2007). [CrossRef] [PubMed]
  28. M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. OfConnell, D. Sank, J. Wenner, J. M. Martinis, and A. N. Cleland, “Synthesizing arbitrary quantum states in a superconducting resonator,” Nature459, 546–549 (2009). [CrossRef] [PubMed]
  29. J. M. Raimond, P. Facchi, B. Peaudecerf, S. Pascazio, C. Sayrin, I. Dotsenko, S. Gleyzes, M. Brune, and S. Haroche, “Quantum Zeno dynamics of a field in a cavity,” Phys. Rev. A86, 032120 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited