OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5536–5549

Supercontinuum pulse shaping in the few-cycle regime

Franz Hagemann, Oliver Gause, Ludger Wöste, and Torsten Siebert  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 5536-5549 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3193 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The synthesis of nearly arbitrary supercontinuum pulse forms is demonstrated with sub-pulse structures that maintain a temporal resolution in the few-cycle regime. Spectral broadening of the 35 fs input pulses to supercontinuum bandwidths is attained in a controlled two-stage sequential filamentation in air at atmospheric pressure, facilitating a homogeneous power density over the full spectral envelope in the visible to near infrared spectral range. Only standard optics and a liquid crystal spatial light modulator (LC-SLM) are employed for achieving pulse compression to the sub 5 fs regime with pulse energies of up to 60 μJ and a peak power of 12 GW. This constitutes the starting point for further pulse form synthesis via phase modulation within the sampling limit of the pulse shaper. Transient grating frequency-resolved optical gating (TG-FROG) allows for the characterization of pulse forms that extend over several hundred femtoseconds with few-cycle substructures.

© 2013 OSA

OCIS Codes
(230.3720) Optical devices : Liquid-crystal devices
(320.5520) Ultrafast optics : Pulse compression
(320.5540) Ultrafast optics : Pulse shaping
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

Original Manuscript: November 13, 2012
Revised Manuscript: January 7, 2013
Manuscript Accepted: January 7, 2013
Published: February 27, 2013

Franz Hagemann, Oliver Gause, Ludger Wöste, and Torsten Siebert, "Supercontinuum pulse shaping in the few-cycle regime," Opt. Express 21, 5536-5549 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun.3, 807 (2012). [CrossRef] [PubMed]
  2. E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, and F. K. D, “Attosecond control and measurement: Lightwave electronics,” Science317, 769–775 (2007). [CrossRef] [PubMed]
  3. E. Granados, L.-J. Chen, C.-J. Lai, K.-H. Hong, and F. X. Kaertner, “Wavelength scaling of optimal hollow-core fiber compressors in the single-cycle limit,” Opt. Express20, 9099–9108 (2012). [CrossRef] [PubMed]
  4. D. Adolph, A. M. Sayler, T. Rathje, K. Ruehle, and G. G. Paulus, “Improved carrier-envelope phase locking of intense few-cycle laser pulses using above-threshold ionization,” Opt. Lett.36, 3639–3641 (2011). [CrossRef] [PubMed]
  5. A. Zheltikov, “Nanoscale nonlinear optics in photonic-crystal fibres,” J. Opt. A: Pure Appl. Opt.8, S47–S72 (2006). [CrossRef]
  6. E. E. Serebryannikov, E. Goulielmakis, and A. M. Zheltikov, “Generation of supercontinuum compressible to single-cycle pulse widths in an ionizing gas,” New J. Phys.10, 093001 (2008). [CrossRef]
  7. L. Berge, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys.70, 1633–1713 (2007). [CrossRef]
  8. J. Bethge, C. Bree, H. Redlin, G. Stibenz, P. Staudt, G. Steinmeyer, A. Demircan, and S. Duesterer, “Self-compression of 120 fs pulses in a white-light filament,” J. Opt.13, 055203 (2011). [CrossRef]
  9. L. Berge, S. Skupin, and G. Steinmeyer, “Temporal Self-Restoration of Compressed Optical Filaments,” Phys. Rev. Lett.101, 213901 (2008). [CrossRef] [PubMed]
  10. C. Hauri, W. Kornelis, F. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B79, 673–677 (2004). [CrossRef]
  11. A. Couairon, M. Franco, A. Mysyrowicz, J. Biegert, and U. Keller, “Pulse self-compression to the single-cycle limit by filamentation in a gas with a pressure gradient,” Opt. Lett.30, 2657–2659 (2005). [CrossRef] [PubMed]
  12. A. Guandalini, P. Eckle, M. Anscombe, P. Schlup, J. Biegert, and U. Keller, “5.1 fs pulses generated by filamentation and carrier envelope phase stability analysis,” J. Phys. B39, 257–264 (2006). [CrossRef]
  13. G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, J. P. Wolf, L. Bergée, and S. Skupin, “UV-supercontinuum generated by femtosecond pulse filamentation in air: Meter-range experiments versus nummerical simulations,” Appl. Phys. B82, 341–345 (2006). [CrossRef]
  14. P. Béjot, J. Kasparian, and J. Wolf, “Dual-color co-filamentation in argon,” Opt. Express16, 14115–14127 (2008). [CrossRef] [PubMed]
  15. P. Béjot, J. Kasparian, and J.-P. Wolf, “Cross compression of light bullets by two-color cofilamentation,” Phys. Rev. A78, 043804 (2008). [CrossRef]
  16. N. Akoezbek, S. A. Trushin, A. Baltuska, W. Fuss, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, and M. Bloemer, “Extending the supercontinuum spectrum down to 200 nm with few-cycle pulses,” New J. Phys.8, 177 (2006). [CrossRef]
  17. A. Rondi, J. Extermann, L. Bonacina, S. Weber, and J. P. Wolf, “Characterization of a MEMS-based pulse-shaping device in the deep ultraviolet,” Appl. Phys. B96, 757–761 (2009). [CrossRef]
  18. S. Demmler, J. Rothhardt, A. M. Heidt, A. Hartung, E. G. Rohwer, H. Bartelt, J. Limpert, and A. Tuennermann, “Generation of high quality, 1.3 cycle pulses by active phase control of an octave spanning supercontinuum,” Opt. Express19, 20151–20158 (2011). [CrossRef] [PubMed]
  19. M. Yamashita, K. Yamane, and R. Morita, “Quasi-automatic phase-control technique for chirp compensation of pulses with over-one-octave bandwidth-generation of few- to mono-cycle optical pulses,” IEEE J. Sel. Top. Quantum Electron.12, 213–222 (2006). [CrossRef]
  20. B. Xu, Y. Coello, V. V. Lozovoy, D. A. Harris, and M. Dantus, “Pulse shaping of octave spanning femtosecond laser pulses,” Opt. Express14, 10939–10944 (2006). [CrossRef] [PubMed]
  21. K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation,” Opt. Lett.28, 2258–2260 (2003). [CrossRef] [PubMed]
  22. B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett.28, 1987–1989 (2003). [CrossRef] [PubMed]
  23. A. Prakelt, M. Wollenhaupt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Compact, robust, and flexible setup for femtosecond pulse shaping,” Rev. Sci. Instr.74, 4950–4953 (2003). [CrossRef]
  24. R. Morita, M. Hirasawa, N. Karasawa, S. Kusaka, N. Nakagawa, K. Yamane, L. Li, A. Suguro, and M. Yamashita, “Sub-5 fs optical pulse characterization,” Meas. Sci. Technol.13, 1710–1720 (2002). [CrossRef]
  25. J. Köhler, M. Wollenhaupt, T. Bayer, C. Sarpe, and T. Baumert, “Zeptosecond precision pulse shaping,” Opt. Express19, 11638–11653 (2011). [CrossRef] [PubMed]
  26. A. Poppe, R. Holzwarth, A. Apolonski, G. Tempea, C. Spielmann, T. Hansch, and F. Krausz, “Few-cycle optical waveform synthesis,” Appl. Phys. B72, 373–376 (2001). [CrossRef]
  27. S. Rausch, T. Binhammer, A. Harth, F. Kärtner, and U. Morgner, “Few-cycle femtosecond field synthesizer,” Opt. Express16, 17410–17419 (2008). [CrossRef] [PubMed]
  28. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instr.21, 1929–1960 (2000). [CrossRef]
  29. M. Wollenhaupt, A. Assion, and T. Baumert, “Femtosecond laser pulses: Linear properties, manipulation, generation and measurement,” in Springer Handbook of Lasers and Optics, F. Träger, ed. (Springer, Berlin, 2007), pp. 937–983. [CrossRef]
  30. R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbugel, B. Richman, and D. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instr.68, 3277–3295 (1997). [CrossRef]
  31. B. E. Schmidt, W. Unrau, A. Mirabal, S. Li, M. Krenz, L. Wöste, and T. Siebert, “Poor man’s source for sub 7 fs: a simple route to ultrashort laser pulses and their full characterization,” Opt. Express16, 18910–18921 (2008). [CrossRef]
  32. B. E. Schmidt, O. Gause, F. Hagemann, S. Li, W. Unrau, L. Wöste, and T. Siebert, “Optimal white light control of the negative to neutral to positive charge transition (nenepo) in the electronic manifold of the silver trimer,” J. Phys. Chem. A116, 11459–11466 (2012). [CrossRef] [PubMed]
  33. S. Weber, A. Lindinger, M. Plewicki, C. Lupulescu, F. Vetter, and L. Woste, “Temporal and spectral optimization course analysis of coherent control experiments,” Chem. Phys.306, 287–293 (2004). [CrossRef]
  34. J. Vaughan, T. Feurer, K. Stone, and K. Nelson, “Analysis of replica pulses in femtosecond pulse shaping with pixelated devices,” Opt. Express14, 1314–1328 (2006). [CrossRef] [PubMed]
  35. T. Brixner and G. Gerber, “Quantum control of gas-phase and liquid-phase femtochemistry,” Chem. Phys. Chem.4, 418–438 (2003). [CrossRef] [PubMed]
  36. V. Lozovoy and M. Dantus, “Coherent control in femtochemistry,” Chem. Phys. Chem.6, 1970–2000 (2005). [CrossRef] [PubMed]
  37. O. Kühn and L. Wöste, eds., Analysis and Control of Ultrafast Photoinduced Reactions, Springer Series in Chemical Physics, vol. 87, (Springer, Berlin2007). [CrossRef]
  38. Y. Silberberg, “Quantum Coherent Control for Nonlinear Spectroscopy and Microscopy,” Annu. Rev. Phys. Chem.60, 277–292 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited