OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5575–5581

Transformation optics for cavity array metamaterials

James Q. Quach, Chun-Hsu Su, and Andrew D. Greentree  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 5575-5581 (2013)
http://dx.doi.org/10.1364/OE.21.005575


View Full Text Article

Enhanced HTML    Acrobat PDF (1744 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Cavity array metamaterials (CAMs), composed of optical microcavities in a lattice coupled via tight-binding interactions, represent a novel architecture for engineering metamaterials. Since the size of the CAMs’ constituent elements are commensurate with the operating wavelength of the device, it cannot directly utilise classical transformation optics in the same way as traditional metamaterials. By directly transforming the internal geometry of the system, and locally tuning the permittivity between cavities, we provide an alternative framework suitable for tight-binding implementations of metamaterials. We develop a CAM-based cloak as the case study.

© 2013 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(160.3918) Materials : Metamaterials
(160.5298) Materials : Photonic crystals
(230.3205) Optical devices : Invisibility cloaks

ToC Category:
Metamaterials

History
Original Manuscript: December 10, 2012
Revised Manuscript: February 12, 2013
Manuscript Accepted: February 12, 2013
Published: February 27, 2013

Citation
James Q. Quach, Chun-Hsu Su, and Andrew D. Greentree, "Transformation optics for cavity array metamaterials," Opt. Express 21, 5575-5581 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-5575


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001). [CrossRef] [PubMed]
  2. D. Schurig, J. J. Mock, B.J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006). [CrossRef] [PubMed]
  3. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B68, 045115 (2003). [CrossRef]
  4. Y. A. Urzhumov and D. R. Smith, “Transformation optics with photonic band gap media,” Phys. Rev. Lett.105, 163901–163905 (2010). [CrossRef]
  5. Z. Liang and J. Li, “Scaling two-dimensional photonic crystals for transformation optics,” Opt. Express1916821–16829 (2011). [CrossRef] [PubMed]
  6. J. Q. Quach, C.-H. Su, A. M. Martin, A. D. Greentree, and L. C. L. Hollenberg, “Reconfigurable quantum metamaterials”, Opt. Express19, 11018–11033 (2011). [CrossRef] [PubMed]
  7. C.-H. Su, “Novel quantum technology based on atom-cavity physics”, Ph.D. thesis, The University of Melbourne, Victoria (2010).
  8. U. Leonhardt, “Optical conformal mapping”, Science312, 1777–1780 (2006). [CrossRef] [PubMed]
  9. P. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields”, Science312, 1780–1782 (2006). [CrossRef] [PubMed]
  10. S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of matter waves”, Phys. Rev. Lett.100, 123002 (2008). [CrossRef] [PubMed]
  11. M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities”, Nat. Phot.2, 741–747, (2008). [CrossRef]
  12. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference”, Phys. Rev. Lett.59, 2044–2046, (1987). [CrossRef] [PubMed]
  13. J. Quach, M. I. Makin, C.-H. Su, A. D. Greentree, and L. C. L. Hollenberg, “Band structure, phase transitions and semiconductor analogs in one-dimensional solid light systems,” Phys. Rev. A,80, 063838 (2009). [CrossRef]
  14. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett.24, 771–713 (1999). [CrossRef]
  15. K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum” Phys. Rev. Lett.83, 967 (1999). [CrossRef]
  16. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett.88, 041112 (2006). [CrossRef]
  17. A. Faraon and J. Vučković, “Local temperature control of photonic crystal devices via micron-scale electrical heaters,” Appl. Phys. Lett.95, 043102 (2009). [CrossRef]
  18. D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, “Postfabrication fine-tuning of photonic crystal microcavities in InAs/InP quantum dot membranes,” Appl. Phys. Lett.87, 151107 (2005). [CrossRef]
  19. D. Englund, B. Ellis, E. Edwards, T. Sarmiento, J. S. Harris, D. A. B. Miller, and J. Vuckovic, “Electrically controlled modulation in a photonic crystal nanocavity,” Opt. Express17, 15409–15419 (2009). [CrossRef] [PubMed]
  20. G. Le Gac, A. Rahmani, C. Seassal, E. Picard, E. Hadji, and S. Callard, “Tuning of an active photonic crystal cavity by an hybrid silica/silicon near-field probe,” Opt. Express17, 21672–21679 (2009). [CrossRef] [PubMed]
  21. A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vuckovic, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett.92, 043123 (2008). [CrossRef]
  22. M.-K. Seo, H.-G. Park, J.-K. Yang, J.-Y. Kim, S.-H. Kim, and Y.-H. Lee, “Controlled sub-nanometer tuning of photonic crystal resonator by carbonaceous nano-dots,” Opt. Express16, 9829–9837 (2008). [CrossRef] [PubMed]
  23. G. Shambat, K. Rivoire, J. Lu, F. Hatami, and J. Vučković, “Tunable-wavelength second harmonic generation from GaP photonic crystal cavities coupled to fiber tapers,” Opt. Express18, 12176–12184 (2010). [CrossRef] [PubMed]
  24. S. Tomljenovic-Hanic, A. D. Greentree, C. M. de Sterke, and S. Prawer, “Flexible design of ultrahigh-Q microcavities in diamond-based photonic crystal slabslexible design of ultrahigh-Q microcavities in diamond-based photonic crystal slabs,” Opt. Express18, 6465–6475 (2009). [CrossRef]
  25. S. Tomljenovic-Hanic, A. D. Greentree, B. C. Gibson, T. J. Karle, and S. Prawer, “Nanodiamond induced high-Q resonances in defect-free photonic crystal slabs,” Opt. Express19, 22219–22226 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited