OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5606–5624

Development of a multi-point polarization-based vibration sensor

Nicolas Linze, Pierre Tihon, Olivier Verlinden, Patrice Mégret, and Marc Wuilpart  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 5606-5624 (2013)
http://dx.doi.org/10.1364/OE.21.005606


View Full Text Article

Enhanced HTML    Acrobat PDF (2744 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we propose a novel kind of multi-point vibration sensor based on the polarization properties of light. Its principle relies on the combination of mechanical transducers with fiber Bragg gratings. When subject to vibrations, the mechanical transducers induce birefringence variations within the fiber and in turn modify the state of polarization, which appears as a power variation after going through a polarizer. The FBGs reflect light from different positions of the sensing fiber and provide wavelength multiplexing. We show that this sensor can provide the vibration frequencies in a quasi-distributed manner.

© 2013 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Sensors

History
Original Manuscript: December 7, 2012
Revised Manuscript: February 15, 2013
Manuscript Accepted: February 15, 2013
Published: February 28, 2013

Citation
Nicolas Linze, Pierre Tihon, Olivier Verlinden, Patrice Mégret, and Marc Wuilpart, "Development of a multi-point polarization-based vibration sensor," Opt. Express 21, 5606-5624 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-5606


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Guo, Z. Yin, and N. Song, “Measuring vibration by using fiber Bragg grating and demodulating it by blazed grating,” Chinese Opt. Lett.2, 393–395 (2004).
  2. A. Fender, W. N. Macpherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W Smith, B. J. S. Jones, S. Mcculloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J.8, 1292–1298 (2008). [CrossRef]
  3. Y. Weng, X. Qiao, T. Guo, M. Hu, Z. Feng, R. Wang, and J. Zhang, “A robust and compact fiber Bragg grating vibration sensor for seismic measurement,” IEEE Sens. J.12, 800–804 (2011). [CrossRef]
  4. Y. Zhu, P. Shum, C. Lu, B. M. Lacquet, P. L. Swart, and S. J. Spammer, “Temperature-insensitive fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett.15, 1437–1439 (2003). [CrossRef]
  5. M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett.10, 1605–1607 (1998). [CrossRef]
  6. T. Guo, L. Shao, H-Y. Tam, P. A. Krug, and J. Albert, “Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling,” Opt. Express17, 20651–20660 (2009). [CrossRef] [PubMed]
  7. K. Wada, H. Narui, D. Yakamoto, T. Matsuyama, and H. Horinaka, “Balanced polarization maintaining fiber Sagnac interferometer vibration sensor,” Opt. Express19, 21467–21474 (2011). [CrossRef] [PubMed]
  8. X. Fang, “Fiber-optic distributed sensing by two-loop Sagnac interferometer,” Opt. Lett.21, 444–446 (1996). [CrossRef] [PubMed]
  9. X. Hong, J. Wu, C. Zuo, F. Liu, H. Guo, and K. Xu, “Dual Michelson interferometers for distributed vibration detection,” Appl. Opt.50, 4333–4338 (2011). [CrossRef] [PubMed]
  10. R. M. Manuel, M. G. Shlyagin, and S. V. Miridonov, “Location of a time-varying disturbance using an array of identical fiber-optic interferometers interrogated by CW DFB laser,” Opt. Express16, 20666–20675 (2008). [CrossRef] [PubMed]
  11. J. C. Juarez and H. F. Taylor, “Field test of a distributed fiber-optic intrusion sensor system for long perimeters,” Appl. Opt.46, 1968–1971 (2007). [CrossRef] [PubMed]
  12. Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol.28, 3243–3249 (2010).
  13. K. Hotate and S. S. L. Ong, “Distributed dynamic strain measurement using a correlation-based Brillouin sensing system,” IEEE Photon. Technol. Lett.15, 272–274 (2003). [CrossRef]
  14. P. Chaube, B. G. Colpitts, D. Jagannathan, and A. W. Brown, “Distributed fiber-optic sensor for dynamic strain measurement,” IEEE Sens. J.8, 1067–1072 (2008). [CrossRef]
  15. R. Bernini, A. Minardo, and L. Zini, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett.34, 2613–2615 (2009). [CrossRef] [PubMed]
  16. F. Qin, H. Li, W. Fan, and Q. Sheng, “Experimental study on vibration frequency response of micro-bend optic-fiber sensor,” Chinese Opt. Lett.7, 556–559 (2009). [CrossRef]
  17. Z. Zhang and X. Bao, “Continuous and damped vibraton detection based on fiber diversity detection sensor by Rayleigh backscattering,” J. Lightwave Technol.26, 832–838 (2008). [CrossRef]
  18. Z. Zhang and X. Bao, “Distributed optical fiber vibration sensor based on spectrum analysis of polarization-OTDR system,” Opt. Express16, 10240–10247 (2008). [CrossRef] [PubMed]
  19. G. Rajan, M. Ramakrishnan, Y. Semenova, A. Domanski, A. Boczkowska, T. Wolinski, and G. Farrell, “Analysis of vibration measurements in a composite material using an embedded PM-PCF polarimetric sensor and an FBG sensor,” IEEE Sens. J.12, 1365–1371 (2012). [CrossRef]
  20. N. Linze, P. Tihon, O. Verlinden, P. Mégret, and M. Wuilpart, “Linearity considerations in polarization-based vibration sensors,” Appl. Opt.51, 6997–7004 (2012). [CrossRef] [PubMed]
  21. M. Wuilpart, P. Mégret, M. Blondel, A. J. Rogers, and Y. Defosse, “Measurement of the spatial distribution of birefringence in optical fibers,” IEEE Photon. Technol. Lett.13, 836–838 (2001). [CrossRef]
  22. S. C. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightwave Technol.1, 312–331 (1983). [CrossRef]
  23. A. Bertholds and R. Dandliker, “Determination of the individual strain-optic coefficients in single mode optical fibre,” J. Lightwave Technol.6, 17–20 (1988). [CrossRef]
  24. A. Galtarossa, D. Grosso, and L. Palmieri, “Accurate characterization of twist-induced optical activity in single-mode fibers by means of polarization-sensitive reflectometry,” IEEE Photon. Technol. Lett.21, 1713–1715 (2009). [CrossRef]
  25. S. Bette, C. Caucheteur, M. Wuilpart, and P. Mégret, “Spectral characterization of differential group delay in uniform fiber Bragg gratings,” Opt. Express13, 9954–9960 (2005). [CrossRef] [PubMed]
  26. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).
  27. M. Wuilpart, “Rayleigh Scattering in Optical Fibers and Applications to Distributed Measurements,” in Advanced Fiber Optics: Concepts and Technology, L. Thévenaz, eds. (EPFL Press, 2011), pp. 207–262.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited