OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5636–5642

Excitation of confined modes on particle arrays

X. M. Bendaña, G. Lozano, G. Pirruccio, J. Gómez Rivas, and F. J. García de Abajo  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 5636-5642 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2809 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe both theoretically and experimentally the existence and excitation of confined modes in planar arrays of gold nanodisks. Ordered 2D lattices of monodispersive nanoparticles are manufactured, embedded in a silica matrix, and exposed to evanescent prism-coupling illumination, leading to dark features in the reflectivity, which signal the presence of confined modes guided along the arrays. We find remarkable agreement between theory and experiment in the frequency-momentum dispersion of the resonances. Direct excitation of these modes reveals long propagation distances and deep extinction features. This combined experimental and theoretical characterization of guided modes shows a good understanding of the optical response of metallic particles arrays, which can be beneficial in future designs of optical-signal and distant-sensing applications.

© 2012 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides
(230.7390) Optical devices : Waveguides, planar
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: September 13, 2012
Revised Manuscript: December 3, 2012
Manuscript Accepted: December 7, 2012
Published: March 1, 2013

X. M. Bendaña, G. Lozano, G. Pirruccio, J. Gómez Rivas, and F. J. García de Abajo, "Excitation of confined modes on particle arrays," Opt. Express 21, 5636-5642 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. R. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91, 227402 (2003). [CrossRef] [PubMed]
  2. A. McFarland and R. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett.3, 1057–1062 (2003). [CrossRef]
  3. A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” An. Chem.78, 4416–4423 (2006). [CrossRef]
  4. K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B110, 19220–19225 (2006). [CrossRef] [PubMed]
  5. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108, 494–521 (2008). [CrossRef] [PubMed]
  6. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008). [CrossRef] [PubMed]
  7. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science275, 1102–1106 (1997). [CrossRef] [PubMed]
  8. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78, 1667–1670 (1997). [CrossRef]
  9. P. Johansson, H. Xu, and M. Käll, “Surface-enhanced raman scattering and fluorescence near metal nanoparticles,” Phys. Rev. B72, 035427 (2005). [CrossRef]
  10. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5, 1569–1574 (2005). [CrossRef] [PubMed]
  11. L. Rodríguez-Lorenzo, R. A. Álvarez-Puebla, I. Pastoriza-Santos, S. Mazzucco, O. Stéphan, M. Kociak, L. M. Liz-Marzán, and F. J. García de Abajo, “Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering,” J. Am. Chem. Soc.131, 4616–4618 (2009). [CrossRef] [PubMed]
  12. X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags,” Nat. Biotech.26, 83–90 (2008). [CrossRef]
  13. L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci.100, 13549–13554 (2003). [CrossRef] [PubMed]
  14. Y. L. Luo, Y. S. Shiao, and Y. F. Huang, “Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy,” ACS Nano5, 7796–7804 (2011). [CrossRef] [PubMed]
  15. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16, 21793–21800 (2008). [CrossRef] [PubMed]
  16. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010). [CrossRef] [PubMed]
  17. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science293, 269–271 (2001). [CrossRef] [PubMed]
  18. P. V. Kamat, “Photophysical, photochemical and photocatalytic aspects of metal nanoparticles,” J. Phys. Chem. B106, 7729–7744 (2002). [CrossRef]
  19. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys.116, 6755–6759 (2002). [CrossRef]
  20. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107, 668–677 (2003). [CrossRef]
  21. V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37, 1792–1805 (2008). [CrossRef] [PubMed]
  22. P. E. Batson, “A new surface plasmon resonance in clusters of small aluminum spheres,” Ultramicroscopy9, 277–282 (1982). [CrossRef]
  23. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridizaton in nanoparticle dimers,” Nano Lett.4, 899–903 (2004). [CrossRef]
  24. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: Singular response in the limit of touching dimers,” Opt. Express14, 9988–9999 (2006). [CrossRef] [PubMed]
  25. X. M. Bendaña and F. J. García de Abajo, “Confined collective excitations of self-standing and supported planar periodic particle arrays,” Opt. Express17, 18826–18835 (2009). [CrossRef]
  26. D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution moire mapping of particle plasmon modes,” Phys. Rev. Lett.104, 143901 (2010). [CrossRef] [PubMed]
  27. M. A. Otte, M. C. Estevez, D. Regatos, L. M. Lechuga, and B. Sepulveda, “Guiding light in monolayers of sparse and random plasmonic meta-atoms,” ACS NANO5, 9179–9186 (2011). [CrossRef] [PubMed]
  28. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett.23, 1331–1333 (1998). [CrossRef]
  29. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2, 229–232 (2003). [CrossRef] [PubMed]
  30. R. Sainidou and F. J. García de Abajo, “Plasmon guided modes in nanoparticle metamaterials,” Opt. Express16, 4499–4506 (2008). [CrossRef] [PubMed]
  31. F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1290 (2007). [CrossRef]
  32. S. R. K. Rodríguez, M. C. Schaafsma, A. Berrier, and J. Gomez-Rivas, “Collective resonances in plasmonic crystals: Size matters,” Phys. B p. DOI: (2012). [CrossRef]
  33. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101, 143902 (2008). [CrossRef] [PubMed]
  34. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett.101, 087403 (2008). [CrossRef] [PubMed]
  35. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93, 181108 (2008). [CrossRef]
  36. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102, 146807 (2009). [CrossRef] [PubMed]
  37. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80, 201401 (2009). [CrossRef]
  38. W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotech.6, 423–427 (2011). [CrossRef]
  39. B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82, 155447 (2010). [CrossRef]
  40. A. Otto, “Theory of plasmon excitation in thin films by electrons of non-normal incidence,” Phys. Status Solidi22, 401–406 (1967). [CrossRef]
  41. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, New York, 2006). [CrossRef]
  42. M. A. Verschuuren and H. A. van Sprang, “3d photonic structures by sol-gel imprint lithography,” Mater. Res. Soc. Symp. Proc.1002, 1002-N03-05 (2007). [CrossRef]
  43. J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonic crystals: Putting a new twist on light,” Nature386, 143–149 (1997). [CrossRef]
  44. S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science282, 274–276 (1998). [CrossRef] [PubMed]
  45. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B60, 5751–5758 (1999). [CrossRef]
  46. R. Ulrich and M. Tacke, “Submillimeter waveguiding on periodic metal structure,” Appl. Phys. Lett.22, 251–253 (1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited