OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5643–5653

Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems

Ali Hatef, Seyed M. Sadeghi, Simon Fortin-Deschênes, Etienne Boulais, and Michel Meunier  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 5643-5653 (2013)
http://dx.doi.org/10.1364/OE.21.005643


View Full Text Article

Enhanced HTML    Acrobat PDF (1177 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is well-known that optical properties of semiconductor quantum dots can be controlled using optical cavities or near fields of localized surface plasmon resonances (LSPRs) of metallic nanoparticles. In this paper we study the optics, energy transfer pathways, and exciton states of quantum dots when they are influenced by the near fields associated with plasmonic meta-resonances. Such resonances are formed via coherent coupling of excitons and LSPRs when the quantum dots are close to metallic nanorods and driven by a laser beam. Our results suggest an unprecedented sensitivity to the refractive index of the environment, causing significant spectral changes in the Förster resonance energy transfer from the quantum dots to the nanorods and in exciton transition energies. We demonstrate that when a quantum dot-metallic nanorod system is close to its plasmonic meta-resonance, we can adjust the refractive index to: (i) control the frequency range where the energy transfer from the quantum dot to the metallic nanorod is inhibited, (ii) manipulate the exciton transition energy shift of the quantum dot, and (iii) disengage the quantum dot from the metallic nanoparticle and laser field. Our results show that near meta-resonances the spectral forms of energy transfer and exciton energy shifts are strongly correlated to each other.

© 2013 OSA

OCIS Codes
(270.1670) Quantum optics : Coherent optical effects
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Quantum Optics

History
Original Manuscript: September 21, 2012
Revised Manuscript: November 8, 2012
Manuscript Accepted: January 7, 2013
Published: March 1, 2013

Citation
Ali Hatef, Seyed M. Sadeghi, Simon Fortin-Deschênes, Etienne Boulais, and Michel Meunier, "Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems," Opt. Express 21, 5643-5653 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-5643


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Toishi, D. Englund, A. Faraon, and J. Vucković, “High-brightness single photon source from a quantum dot in a directional-emission nanocavity,” Opt. Express17(17), 14618–14626 (2009). [CrossRef] [PubMed]
  2. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science320(5877), 769–772 (2008). [CrossRef] [PubMed]
  3. V. Wood and V. Bulović, “Colloidal quantum dot light-emitting devices,” Nano Rev1(0), 5202 (2010). [CrossRef] [PubMed]
  4. J. Chandrasekaran, D. Nithyaprakash, K. B. Ajjan, S. Maruthamuthu, D. Manoharan, and S. Kumar, “Hybrid solar cell based on blending of organic and inorganic materials—An overview,” Renew. Sustain. Energy Rev.15(2), 1228–1238 (2011). [CrossRef]
  5. S. J. Rosenthal, J. C. Chang, O. Kovtun, J. R. McBride, and I. D. Tomlinson, “Biocompatible quantum dots for biological applications,” Chem. Biol.18(1), 10–24 (2011). [CrossRef] [PubMed]
  6. S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett.92(22), 221108 (2008). [CrossRef] [PubMed]
  7. T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B84(24), 245309 (2011). [CrossRef]
  8. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007). [CrossRef] [PubMed]
  9. M. Achermann, “Exciton-plasmon interactions in metal-semiconductor nanostructures,” J. Phys. Chem. Lett.1(19), 2837–2843 (2010). [CrossRef]
  10. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009). [CrossRef] [PubMed]
  11. J. Lee, P. Hernandez, J. Lee, A. O. Govorov, and N. A. Kotov, “Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection,” Nat. Mater.6(4), 291–295 (2007). [CrossRef] [PubMed]
  12. S. M. Sadeghi, “Plasmonic metaresonances: Molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B79(23), 233309 (2009). [CrossRef]
  13. A. Hatef, S. M. Sadeghi, and M. R. Singh, “Coherent molecular resonances in quantum dot-metallic nanoparticle systems: coherent self-renormalization and structural effects,” Nanotechnology23(20), 205203 (2012). [CrossRef] [PubMed]
  14. S. M. Sadeghi, “Plasmonic metaresonance nanosensors: Ultrasensitive tunable optical sensors based on nanoparticle molecules,” IEEE Trans. Nanobioscience10, 566–571 (2011).
  15. K.-S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B109(43), 20331–20338 (2005). [CrossRef] [PubMed]
  16. H. C. Van de Hulst, Light Scattering by Small Particles (John Wiley & Sons, Inc., 1951).
  17. P. Michler, ed., Single Semiconductor Quantum Dots (Springer, 2009).
  18. O. Marlan, Scully and M. S. Zubairy, Quantum Optics (Cambridge, 1997).
  19. J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B77(16), 165301 (2008). [CrossRef]
  20. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  21. A. Trügler and U. Hohenester, “Strong coupling between a metallic nanoparticle and a single molecule,” Phys. Rev. B77(11), 115403 (2008). [CrossRef]
  22. J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature483(7390), 421–427 (2012). [CrossRef] [PubMed]
  23. Z. Deng, O. Schulz, S. Lin, B. Ding, X. Liu, X. Wei, R. Ros, H. Yan, and Y. Liu, “Aqueous synthesis of zinc blende CdTe/CdS magic-core/thick-shell tetrahedral-shaped nanocrystals with emission tunable to near-infrared,” J. Am. Chem. Soc.132(16), 5592–5593 (2010). [CrossRef] [PubMed]
  24. R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B83(23), 235406 (2011). [CrossRef]
  25. P. Guyot-Sionnest, X. Peng, and D. Mingos, Intraband Spectroscopy and Semiconductor Nanocrystals Semiconductor Nanocrystals and Silicate Nanoparticles (Springer Berlin / Heidelberg, 2005), pp. 59–77.
  26. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006). [CrossRef] [PubMed]
  27. J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B77(16), 165301 (2008). [CrossRef]
  28. R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: Double peaked Fano structure and bistability,” Nano Lett.8(7), 2106–2111 (2008). [CrossRef] [PubMed]
  29. H. Hartmut and W. K. Stephan, Quantum Theory of The Optical And Electronic Properties Of Semiconductors (World Scientific, 2004).
  30. T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007). [CrossRef] [PubMed]
  31. I. L. Medintz, K. E. Sapsford, A. R. Clapp, T. Pons, S. Higashiya, J. T. Welch, and H. Mattoussi, “Designer variable repeat length polypeptides as scaffolds for surface immobilization of quantum dots,” J. Phys. Chem. B110(22), 10683–10690 (2006). [CrossRef] [PubMed]
  32. J. M. Slocik, F. Tam, N. J. Halas, and R. R. Naik, “Peptide-assembled optically responsive nanoparticle complexes,” Nano Lett.7(4), 1054–1058 (2007). [CrossRef] [PubMed]
  33. R. Kadono, W. Higemoto, K. Nagamine, and F. L. Pratt, “An atom in the bloch state,” Phys. Rev. Lett.83(5), 987–990 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited